

ตัตneen A. A.T.I (E.C)
gic
ตั\&mpicce

ELECTRIC MOTOR REPAIR

\& CONTROL

PART - I

ELECTRIC MOTOR REPAIR THIRD EDITION

 دలఁంईః:mpč: (C.A.S.B)

ఎరీఎ
〔̊!"

ભ

	\%
	3..ว6¢:
	\%..ว69:

- ఫిథธ்

©ી Electric Motor Repair ఠวふฺరీふว: Electric Motor Repair \& Con-

 \$న్రి:

 ంీ:எ (ु)

Contents

CHAPTER. 1

全1
 1
Operation of Split-phase \& Capacitor-start Motors
 9
 20
 22
Terminal Markings for Single-phase Motors
 29
 30
 31
 41
 42
Rewinding (..... 43
 50
 54
 57
 60
Rewinding the Two-voltage Capacitor-start Motors
 68
 83
 92
 92
Calculations for Rewinding \& Reconnecting 100
 107
The Righ-size Capacitor (..... 110
 110
 112
CHAPTER. 2
 139140
 141
The Repulsion Motor [ๆิ):(u)g\&: cosom] 160

Contents

 162
Electrically Reversible Repulsion Motors163
Rewinding \& Reconnecting Repulsion Motors 164
 165
CHAPTER. 3
 176
 176
 185
Nameplate for Dual-voltage; Three-phase Motors
 186
 190
Connecting Three-phase, Lap-wound Motors
(..... 199
 228
 239
Identifying the Nine Leads of Untagged Three-phase, Dual Voltage, Wye-connected motors 242
Odd-pole Grouping [- -- 258
Rewinding \& Reconnecting Three-phase Motors
 262
Changing Concentric Windings to Lap windings
 265
 272
CHAPTER. 4
 290
 290
 291
 336
 338

Main Parts of Capacitor Motors

(2) (Stator) ఠ600

(1968) @ฐ઼ดดొ৩ NEMA
 pacitor 6θ रomつun Single Phase Induction $60 \delta 000$ Gg\&/

 600>

Fig (1-1) Capacitor-start motor.

 ఎ

Fig (1-2) Capacitor-start motor showing the approximate location of the windings and components.

Fig (1-3) Schematic diagram of the motor in Fig, 1-2. All numbered leads are accessible or come out of the motor.

2 Fig (1-4) Schematic of a permanent-split capacitor motor. All numbered leads are accessible or come out of the motor.

Fig (1-5) Schematic of a two-value capacitor motor. All numbered leads are accessible or come out of the motor.

The Rotor (은)

Stator (ョвாธั)

Fig (1-7) Stator of a capacitor-start motor.

Fig (1-8) Schematic of the stator in Fig. 1-7.

Fig (1-9) One end plate of a single-phase motor.

Fig (1-10) Stationary switch of a single-phase motor.

Fig (1-11) Centrifugal device from a single-phase motor.

 Start $ి$ రి $\left.\varepsilon 3 \varepsilon_{\S}\right\}$

 ァฺุిళ:గి Fig (1-10) ఠદGృ

Fig (1-12) Stationary switch mounted in an end plate. దీદ [్ర (S.P.S.T) శヘ్యీ ఎరీఃఁీ

Fig (1-13) Centrifugal device mounted on the rotor shaft.

Fig (1-14) Schematic of a capacitor-start motor when it is in the off position or during the start (a). When the motor is at full speed (b), the current flows only through the run winding. The stationary switch contacts open at 75 percent of full speed.

Fig (1-15) Two variations of the stationary switch.

The Capacitor (떧ㅁㅁㅁ)

 ఝ్ర:دన్రీన్రీ

 Capacitor గికిఃః

 Microfarad ($\mu \mathrm{f}$) ตीฐ

Electorlytic Capacitor \propto_{L} Fig (1-16)
 -గ్లు乃ా

Fig (1-16) Electrolytic capacitor.

 ตృ

Fig (1-17) Oil capacitor.

Operation of Split-Phase \& Capacitor-Start Motors ((ตฺโ

 دున్రు Two Phase (2ϕ) σ ©

1
(2) (Inductive Reactance)

Fig (1-18) (a) The shape of the sine wave as seen on an oscilloscope.

1. The Sine Wave [$\mathrm{BR}: \mathrm{col}(\mathrm{E})$]

Fig (1-18) (b) The single-phase sine wave as it will be drawn for illustrative purposes in this book.

Fig (1-19) The two-pole winding illustrating how electrical degrees compare with mechanical degrees.

Fig (1-20) A four-pole winding illustrating how 360 electrical degrees compare with 360 mechanical degrees.

Fig (1-21) The single-phase sine wave with both volts and amperes.

Fig (1-22) A generating conductor of an alternating current generator or alternator cutting the lines of force of a magnetic field.

Fig (1-23) Positions of a conductor as voltage is generated.

Fig (1-24) How the sine wave is produced. The conductor at positions 1 through 5 make one revolution. Also shown are the degrees and the matching time at 60 Hz .

 (3) $2 \mathfrak{ర} 180^{\circ}$ ดิఏ r

2. Inductive Reactance (떠줄ㅁTㅇ․

Fig (1-25) The magnetic field around one conductor (a) and the combined magnetic fields of two conductors (b). The conductors of both (a) and (b) are carrying the same amount of amps.

Fig (1-26) The delay in current flow because of inductive reactance in a coil of wire.

 G్రుચ్ర్

Fig (1-27) Current flow maintained briefly because of inductive reactance in the same coil of wire when the voltage is shut off. The length of time that the current is delayed matches exactly the length of time that the current is maintained.

Fig (1-28) The delay in current flow in an Ac circuit caused by inductive reactance in a coil of wire.

 డช反ం

య్యరక్తి

Fig (1-29) The Leading current flow in an AC circuit caused by capacitive reactance.

Fig (1-30) Charging a capacitor.

 రితిథల:చన్రీ)
 Іిథp:0soญ"

Fig (1-31) Two-phase sine wave.

Fig (1-32) (a) Two-phase stator with phase 1 energized and corresponding position on sine wave.

6\$0ల్లీI Phase 2 గ్ని ๙ை:
 دొన్ర Fig (1-32) (b) ఐీ

 Fig (1-32) (c) Phase 1

 ๙วી Fig (1-32) (d) ఐ్ర

 గ్రీ: งన్రీ

 3ీ§ $\delta 6 a$ [Start §

ఐีమวई:

Fig (1-33) A Split-phase motor.

 4 ఐைணீరిโీ 60:

Fig (1-34) Schematic of (a) a split-phase motor and (b) a capacitor-start motor.

 గి శ

Fig (1-35) Schematic of a split-phase motor in (a) start and (b) run positions.

 600工ల్గ॥ య్యరరఠి:

 pacitor-Start $6 \leqslant$ रంm

 બృ

Split Phase $\sigma \theta$ रुळวलీ Start

 య్సరంఠ 90° โం: Run రిદ

 ~ల్ర: Capacitor өjౌ:

Fig (1-36) Split-phase start-winding and run-winding amps 50° apart.

Fig (1-37) Capacitor-start, start-winding, and run-winding amps 90° apart.

 ఎబ్రు"

Fig (1-38) AC capacitors with mounting hardware and accessories.

Procedure For Analyzing Motor Troubles

(вหาロา

Fig (1-39) The bearings are tested by trying to move the shaft vertically.

Fig (1-40) A motor showing end plates not mounted properly. This prevents the rotor from turning. Use a mallet to tap plates into position.

Fig (1-41) The bent shaft of a rotor.

(A)

Fig (1-42) (a) To determine whether winding is grounded, connect one test lead to the winding and the other test lead to the core. The lighted lamp indicates a ground.

 -ీ:oઈq७
 ञวి
 શర ఇ|วృรీโ:

 પ్యీి: ైદ:

(B)

Fig (1-42) (b) To determine whether winding is grounded, connect one test lead to the winding and the other test lead to the core. The lighted lamp indicates a ground.

 Switch గిన్పీईగీన め
 ఝ్రణొ:

 ఇనికిఃยర:

 ఎరక్గియీఁుు

Rewinding The Capacitor Start Motor

Fig (1-43) End plates and frame marked before disassembling.

 C

(6) $\odot \&: 0 \delta ర ్ ర ీ:$

 ిి1દ3

(2) (Pole)

(7) రిடెદ

(3) (Time Rating) ァลํㅚ§ฐ
(4) ऊน్షฟ̀

(8) $్$

(10) Code 2063
(11) (Design Letter for Integral Horse Pow

Fig (1-44) The two windings of a capacitor-start motor. . Note the four sections or poles in each winding.

 จబ્રા
 Start î రీ

w్ర్రీ" $\cos 0$ Org
 4 完:(§) cosmonica

Fig (1-45) A diagram of the stator in Fig. 1-44 with slots and windings shown as they would look if rolled flat. The start winding poles are located between two running winding poles.

Fig (1-46) The center of a pole forms in the teeth between two coil sides that have their currents flowing in opposite directions. This determines where the start-winding coils are placed.

 Run

Fig (1-47) Each pole consists of three coils, and each coil is wound in two slots separated by other slots.

 గ్మిఁo
 గ్ర (โొ:

Fig (1-48) The pitch, or span, of the three coils forming one pole.

Fig (1-49) The method of recording the pitch of the coils in a 32-siot, four-pole motor. The number of turns in each coil can be recorded alongside each coil in the diagram if so desired.

Fig (1-50) Pitch data of a 36-slot, four-pole motor. The poles of the start winding are not the same; one pole has four coils, and the next has three.

Fig (1-51) Pitch data of a 24-slot, four-pole motor. The outer coils of adjacent poles are in the same slot.

Fig (1-52) Air chisel for stripping windings.

Terminal Markings For Single-Phase Motors

Note

A. Dual Voltage (문

 రిદెદ

Dual Voltage

 Main §

Note（1）

Note（2）

$\mathrm{T}_{1}-\circledast$ 庐
T_{5}－ふゝे
T_{2}－अGll T_{8}－ァฺి

Single Voltage
Schematic Diagrams of Capacitor－Start Motors

 งన్రీપ్రీర్రిఁీ

Auxiliary Devices External to Motor

Marking of Rigidly Mounted Terminals

 $\infty \delta \infty 0: 602 c$ cof

How To Recognize a Connection

శฉை

న్రిల్రఃை

Fig (1-54) (a) סૂઠ

 ตj:G్రీుున్రీ" మiరిలి 'Straight Line Dia-

Fig (1-54) (b) 2 N 4 - Pole, OneCircuit Connection Gీఠuయ్రు" One Cir-

Fig (1-53) Lap winding.

Fig (1-54) (a) A pole group as it would appear in a stator (left), laid flat (center), and in a straight-line diagram (right).

Fig (1-54) (b) A four-pole, one-circuit, short jumper connection, showing the polarity of each coil. Figs. 1-74 through 1-77 explain this illustration of run-winding poles.

 ఖ్రిడుీ

 ుల్ర య్సరకి:ు

 ดిขป์

 Circuit

 §రణ (

 Strands of a Conductor' (వ్వి) 'Two

Fig (1-55) A four-pole, two-circuit, short jumper connection.

Fig (1-56) A four-pole, four-circuit connection.

Fig (1-57) A four-pole, one-circuit, short jumper connection wound with two wires. The coil groups are wound two in hand, and the wires are connected as one conductor with two strands.

 Run రిદృ

 య్సరీఠి:uంీయ

 'دుగ్రీ॥ Fig (1-61) دబ్ల 2 §ీ 4 ตी Cir-

Fig (1-60) A one- and two-circuit short jumper connection connected in parallel for low voltage.

Fig (1-61) A two- and four-circuit short jumper connection.
Fig (1-62) Two-circuit coil groups wound two in hand, as they would appear in a motor.

 In hand' G్రీరం 62) ర్రદ

 Fig (1-63) © $\operatorname{Fig}(1-66)$) 2$\}$
 ตjว:G®uల్రీII Fig (1-67) G
 శద్మณ్రీలున్రీ"

Fig (1-63) A one-circuit, two-layer connection.

Fig (1-64) A two-circuit, two-layer connection.

Fig (1-65) A four-circuit, two-layer connection.

Fig (1-66) An eight-circuit, two-layered connection.

Fig (1-67) A one- and two-circuit, two-layered connection.

Fig (1-68) A two- and four-circuit, two-layered connection.
(1) -60nonsर्טో

Fig (1-69) A four-and eight-circuit, two-layered connection.

 71) ॥ rర్మొ: ఐை

 [̧రీల్రు"

Fig (1-74) §
 (1-76) ఎన్రీ Ө్లરీ:

 Phase σ \&

Fig (1-70) Sketch of stator as done by the repairperson to show where the leads should be brought out of the stator when the rewind is completed and the leads are tied down. The start switch is on the left side, and so a start-winding lead is tied down at that spot. One start lead goes to the capacitor, and the run leads go out the right side of the motor.

Fig (1-71) A two-voltage start winding with two electrolytic capacitors and two switches.
(4) Jumper (

Fig (1-72) A three-lead predetermined rotation connection found in sealed refrigeration compressors and submersible pumps. The switch and capacitors can be located separately from the motor.

Fig (1-73) A two-lead motor with the start winding connected internally.

Fig (1-75) (b) Four-pole dual-voltage split-phase motor-long jumper-counterclockwise for 230 volts.

Fig (1-76) Straight-line diagram of a split-phase motor connected with a short jumper.

(a) One-circuit, short jumper connection

(b) Two-circuit, short jumper connection

Fig (1-77) (a) One-circuit and (b) two circuit, short jumper connection.

Fig (1-78) A four-pole two-voltage motor diagram with short jumpers in the running winding.

Fig (1-79) A four-pole two-voltage motor with long jumper connections.

Fig (1-80) One-circuit, long jumper run winding.

Fig (1-81) Two-circuit, long jumper run winding.

Fig (1-82) One-and two-circuit, long jumper run winding.

Fig (1-83) Two- and four-circuit, long jumper run winding.
(5) Run ర్రిદ
 oฺీర人॥

๙<uncé:ァroç		
A	105	$105^{\circ} \mathrm{C}$
B	130	$130^{\circ} \mathrm{C}$
F	155	$155^{\circ} \mathrm{C}$
H	180	$180^{\circ} \mathrm{C}$

 6002గ్"

 U§m

Fig (1-84) One-step slot-liner former

Fig (1-85) Roller-type slot-liner former.
 Sวp

 Former roమદ:

Fig (1-86) Machine used for form reinforcing tape on the slot-liner insulation.

ીીుગుઠ:

 603 Lamination बp:oŋદ

Single Phase cofocoup:Uqీ

Fig (1-87) Setting the winding head with the inner coil pattern

1. Bottom coil side in slot 2 . Slip separator over bottom coil

2. Place top coil over separator

3. Slip wedge in place

Fig (1-88). Placement of slot separator and wedges.

 (1-87) ద్రદ

Fig (1-89) Forming the second pattern.

Fig (1-90) Forming the third pattern.

 థiరీ 60วగ్రిદ

Fig (1-91) A properly spaced pattern.

 ऊీદલీఔ

Fig (1-92) A properly fitting coil will leave room to insert the start winding easily.

 พబ్ర్1
 ం

以约: ocom

 బు:ంઈைை

 Start ఢిદm>0

Fig (1-93) Wound coil ready for removal.

Fig (1-94) Method of inserting coils in stator.

Fig (1-95) Several poles of completed winding.

Fig (1-96) Stator ready for connecting.

Fig (1-97) Connecting procedure, starting at the bottom and proceeding counterclockwise.
 -60m

Series Connection For Four Poles of The Run Winding

Fig (1-98) The connection of adjacent poles to obtain opposite polarity.

Fig (1-99) The connections of three poles.

 دొయీ॥

Fig (1-100) Four poles connected together and to the line

Fig (1-102) (Continued from Fig. 1-101). The beginning or left of Pole 2 connects to the beginning or left of Pole 3.

Fig (1-103) The end or right of Pole 3 connects to the end or right of Pole 4. The line is connected to the beginning or left of Pole $1\left(T_{1}\right)$ and the beginning or left of Pole $4\left(T_{4}\right)$.

Series Connection for The Start Winding

- (Start

Fig (1-104) Four poles of the run or main winding. The poles are connected so that the current through Pole 1 is from left to right in Pole 1, right to left in Pole 2, left to right in Pole 3, and right to left in Pole 4.

Fig (1-105) A four-pole capacitor-start motor connection.

Fig (1-106) A four-pole capacitor-start motor showing the stationary switch and capacitor connected in the center of the start winding.

ఎई:

Fig (1-107) A four-pole capacitor-start motor connection shown in a circular diagram.

Fig (1-108) A capacitor-start motor with four leads brought outside the frame for reversing.

Fig (1-109) Terminal connection for clockwise and counterclockwise rotation.

Fig (1-110) The connections of a six-pole, capacitorstart motor.

 पజయ్రు"

Fig (1-111) One method of connecting wires between poles.

1. బుదీધృ 603 (Sleeve) røઠగిఁg:Oll

 యסOीII

Step 2
Sleeving is placed over the wires to
 be spliced

> Step 3
> Over one sleeving is placed another of larger size

Step 4
The wires are then spliced and soldered

Fig (1-112) (a) A method of connnecting leads together.
 ヱว:ผุเฉళใి:

Fig (1-113) The lead is tied to the winding with cord so that it cannot be broken off. The windings are also tied to one another to prevent vibration of the wires.

Baking And Varnishing (з

 Flow Type Ģరీ

Fig (1-114) Manual application of solventless resin.

Motor Overload Protective Devices

 ∞ ద:دయ్రీ"

Normal position of bimetal

Fig (1-115) Bimetal overload protector

Position due to overload

Fig (1-116) Bimetal overload protector.

Fig (1-117) Three-terminal overload protector with heater.

Fig (1-118) A single-voltage motor with P_{3} connected internally to T_{1}, T_{1} is accessible to T_{4}, T_{5}, T_{8} and P_{1}

 డఠోం\rightarrow ตj:

Fig (1-119) Dual-voltage motor showing (a) the low-voltage connection and (b) the high-voltage connection. T_{1} is connected to P_{3} internally. All leads except T_{1} and P_{3} are accessible.

ऊు్షశ: ఢర

 బగీయ్రుయ్థిఁియ్ర్"

Fig (1-120) Bimetal type thermotron.

 -

Schematic Diagrams of Capacitor Start Motors

MG 1-2.48 Schematic Diagrams for Capacitor-Start Motors-Reversible

Note-Motor starting switch shown in running position. All directions of rotation shown are facing the end opposite the drive.

Single Voltage-Without Thermal Protector		Sinǵle Voltage-With Thermal Protector	
Line Leads	Terminal Board	Line Leads	Terminal Board
	To obtain clockwise rotation, interchange leads T5 and T8.		To obtain clockwise rotation, interchange leads T5 and T 8.
L1 L2		L1 L2 join	-1, 5
Counter-clockwise rotation T1, T8 T4, T5	$O 6$	Counterclockwise $\begin{array}{llll}\text { rotation } & \text { P1 } & \text { T4, T5 } & \text { T1, T8 }\end{array}$	$\bigcirc 0$
Clockwise rotation Tl, TS T4, 78	To obtain clockwise rotation, interchange leads T1 and T4.	$\begin{array}{llll} \hline \begin{array}{l} \text { Clockwise } \\ \text { rotation } \end{array} & \text { P1 } & \text { T4, T8 } & \text { T1, TS } \\ \hline \end{array}$	Toobtain clockwiserotation interchange leads T1and T4.
	Note-When terminal boards are shown, they are viewed from the front. Dotted lines indicatepermanent connection.		Note- When terminal boards are shown, they are viewed from the front. Dotted lines indicate permanent connection.

Fig (1-121) (a) Schematic diagrams for capacitor-start motors-reversible.

MG 1-2.48 Schematic Diagrams for Capacitor-Start Motors-Reversible

Note-Motor starting switch shown in running position. All directions of rotation shown are facing the end opposite the drive.

Fig (1-121) (b) Schematic diagrams for capacitor-start motors-reversible. (Continued)

MG 1-2.48 Schematic Diagrams for Capacitor-Start Motors-Reversible

Note I - The design proportions for dual-voltage reversible capacitor start motors are such that three different groups of diagrams are necessary show the means for obtainning adequate protecition for these motors. These three groups of diagrams (I, II and III) insert the thermal protector at different points in the circuit therefore different currents are provided to actuate the thermal protector.
Note II - Motor starting switch shown in running position. All directions of rotation shown are facing the end opposite the drive.

Fig (1-121) (c) Schematic diagram for capacitor-start motors-reversible (Continued)

MG 1-2.48 Schematic Diagrams for Capacitor-Start Motors-Reversible-(Continued)

Note-Motor starting switch shown in running position. All directions of rotation shown are facing the end opposite the drive.

GROUP II-DOUBLE VOLTAGE-WITH THERMAL PROTECTOR

Line Leads					Terminal Board	Terminal Board with links
					To obtain clockwise rotation, interchange leads T5 and T8. Lower nameplate voltage To obtain clockwise rotation, interchange leads T5 and T8. Note I-When terminal boards are shown, they are viewed from the front. Dotted lines indicate permanent connection. Note II - Proper connection depends upon design of motor and thermal protector, refer to motor manufacturers' information for proper diagram.	Higher nameplate voltage Toobtain clockwiserotation, interchange leads T5 and T8. Lower nameplate voltage Toobtain clockwiserotation, interchange leads T5 and T8. Note-When terminal boards are shown, they are viewed from the front. Dotted lines indicate permanent connection.
		L2	join	Insulate Separately		
Higher nameplate voltage	Counter- clockwise rotation P1 Clockwise P1 rotation	T4, T5	$\begin{gathered} \mathrm{T} 2, \mathrm{~T} 3 \\ \mathrm{~T} 8 \end{gathered}$	$\ldots .$. $\mathrm{P} 2, \mathrm{T1}$ $\ldots .$. $\mathrm{P} 2, \mathrm{T1}$		
Lower	Counterclockwise P1 rotation	$\begin{gathered} \text { T2, T4 } \\ \text { T5. } \end{gathered}$	P2, T3	T4, T8		
plate voltage	Clockwise rotation P1	$\begin{gathered} \text { T2, T4 } \\ \text { T8 } \end{gathered}$	P2, T3	T1, T5		

Fig (1-121) (d) Schematic diagram for capacitor-start motors-reversible (Continued)

MG 1-2.48 Schematic Diagrams for Capacitor-Start Motors-Reversible-(Continued)
Note-Motor starting switch shown in running position. All directions of rotation shown are facing the end opposite the drive.

GROUP II- DOUBLE VOLTAGE-WITH THERMAL PROTECTOR

Line Leads	Terminal Board	Terminal Board with links
	To obtain clockwise rotation, interchange leads T5 and T8. Lower nameplate voltage To obtain clockwise rotation, interchange leads T5 and T8. Note I -When terminal boards are shown, they are viewed from the front. Dotted lines indicate permanent connection. Note II-Proper cannection depends upon design of motor and thermal protector, refer to motor manufacturers' information for proper diagram.	Higher nameplate voltage To obtain clockwise rotation, interchange leads T5 and T8. Lower nameplate voltage Toobtain clockwiserotation, interchange leads T5 and T8. Note-Whenterminal boards are shown, they are viewed from the front. Dotted lines indicate permanent connection.
Counter- $\begin{array}{l}\text { Counw } \\ \text { clockwise }\end{array}$ Pi Lower name- rotation		
plate Clockwise T2, T4 P2, T3 voltage rotation P1 T8 T5		

Fig (1-121) (e) Schematic diagram for capacitor-start motors-reversible (Continued)

Connections of Capacitor-Start Motors

1. Single Voltage, (ঞ్రీદ

2. Two Voltage. (6 Gpe:G§గuల్ర 60

3. Single Voltage. (艹్yరఠి:ఫిธฺงః)

1. Single Voltage Externally Reversible Capacitor-Start Motor

Fig (1-122) Schematic diagram showing the connection for clockwise rotation, facing the end opposite the shaft. All numbered leads are accessible or come out of the motor.

Fig (1-123) Schematic diagram showing the connection for counterclockwise rotation. All numbered leads are accessible or come out of the motor.

Fig (1-124) Straight-line diagram of a four-pole, capacitor-start motor, connected short jumper.

Fig (1-125) Connection diagram of a four-pule capacitor-start motor.
0ीm Start

Fig (1-126) Straight-line diagram of a four-pole, two-circuit, shortjumper, capacitor-start motor.

Fig (1-127) Four-pole, two-circuit, short jumper, capacitor motor.

2. Single Voltage, Nonreversible Capacitor-Start Motor

((Gुร:
Start § \mathcal{C}_{0} Run

 $600 ว \omega 1$

 Gofomm కగ్ర: Gీయuన్

- Fig (1-128) Nonreversible single-voltage motor. Rotation will be from a start-winding pole group to the nearest like-polarity pole group of the run winding.

 ણీ (1-128) ున్రీ ఐీశఠ్లํ:
 คి Gొన్రే

 Single Voltage ணీయున్ర ${ }_{\rho} \mathrm{O}_{\mathrm{L}}$ Low Voltage $120-\mathrm{V}$

Fig (1-129). Nonreversible high-voltage motor with a low-voltage-rated start winding, connected to the center of the run winding.

 క్రిణว:గ్ని Stat

3. Single Voltage, Reversible Capacitor-Start Motor With Over -Load Protector (口

Capacitor-Start
 ъว:पุદ. (Overload)

 วిใి:Gీరున్రీ" Overload

Fig (1-130) Single-voltage capacitor motor with an overload protector. The overload protector may be located inside the motor or in the junction box outside the motor.

4. Two Voltage, Reversible Capacitor Start Motor

 pacitor-Start $6 \in 503 \infty$

 (พ్⺀) $240-\mathrm{V}$ ঞว:ตp:G¢

 (

 Start ఆી\|l:ui:
 ァ000:GGOOK600 Start

 గి $120-\mathrm{V}$ ఠ్రీ నన్రీం

Fig (1-131) Two-voltage capacitor-start motor connected for low voltage. This is a short jumper connection.

Fig (1-132) Two-voltage motor connected for high voltage.

Fig (1-133) Schematic of a two-voltage motor connected for high voltage.

(a) High-voltage connection

(b) Low-voltage connection

Fig (1-134) High- and low-voltage connections using colored wires instead of numbers.
 ఎई: ๙

 © $ం$:న్ర్|" Fig (1-134) (a) §§ (1-134) (b) ס్రీ

Fig (1-135) Two-voltage capacitor-start motor-connection with two capacitors and one switch. This motor is connected for low voltage. T_{9} and T_{10} are connected to both sides of the centrifugal switch and brought out of the motor.

Start 6ofocoaj:ob \& \%

Fig (1-136) Two-voltage capacitor-start motor connection with two capacitors and one switch. This motor is connected for high voltage. T_{9} and T_{10} keep the start winding and the capacitors in series with the centrifugal switch.

Fig (1-137) Two-voltage capacitor-start motor connection with two capacitors and two switches. This motor is connected for low voltage.

 બp:Gీర⿸\zh14్రి: T_{6} §

Fig (1-138) Two-voltage capacitor-start motor connection with two capacitors and two switches. This motor is connected for high voltage.

Rewinding The Two Voltage Capacitor-Start Motor

 131) §§ Fig (1-132)
 ిి:(న)(ీp:గి Short Jum
 ఆj|: ตp:) Gీణణగయున్రు"

Fig (1-139) Straight-line diagram of a four-pole, short jumper, two-voltage, capacitorstart motor with a layered run winding.

5. Two Voltage, Reversible Capacitor-Start Motor With Overload Protection

 pacitor-Start 66SOOD

 (1-140) ס్ర ం§గ్ర\$ (Ov -er Load) mmuీugన్ర:

 గి T_{1} ఢిற్ధి ఁగ్రైఁ్రీయున్రీ" శจ్|ి. cosomog Low Volt-

Fig (1-140) Two-voltage capacitor-start motor with overload, connected for low voltage.

Fig (1-141) Schematic of a two-voltage motor with overload, showing the path of the run current. Only half of the run current flows through the heat element of the thermal protector when the motor is connected for low voltage.
 －ઈணว：دయ్రీ（Heating
 గి G్రీ9） （1－141）د્ِર ఇీ Run
 603uitigexuల్ Fig（1－
 Mş High Voltage ァ

Fig（1－142）Schematic of a two－voltage motor with an overload device，connected for high voltage．P_{2} is not used with this connection．The nameplate amperes of a high－ voltage－connection will be half that of the low－voltage connection．

6．Single－Voltage，Capacitor Start Motor With Current Relay

 డటઈం \rightarrow ตp：

๙ ్రદコక：ఫిఠc：M
 ァఫి：శవు：
认ิ\＄్షి：

 ฉగ్ముయుయ

Fig（1－143）Schematic of a single－voltage capacitor－start motor using a current relay to control the start winding．

 Run

 న్యిભగ్మిદగ్ Run Series ∞)

 ఖ్రీడయీ Run మింlunగిన్రీ్రియ8:60ు

 -pacitor §ढ़యన్ర: ఐీ

 roృరీ, ̧ి High Current

 Run rent 6 T్రొદ ఫిธง:గ్మిદ శ

 ob δ Start § ตp:క్రీ్్సరీః:

Fig (1-144) Schematic of a single-voltage, capacitor-start motor with a thermal protector, using a current relay to control the start winding.

(a) Low-voltage connection

(b) High-voltage connection

Fig (1-145) Schematic of a two-voltage capacitor-start motor with a current relay controlling the start winding, (a) connected for low voltage and (b) connected for high voltage. The amperes through the coil of the relay is the same for both connections.

 ๙రుబ్రు"

7. Single Voltage, Capacitor-Start Motor With Potential Relay

ిios

 §§

 ఇికృ

 §ీన్రీీీ 75\% క్రిఠpల య్yీ Start

 00: 600 ఫిధి:

 ఖీడ015 Start

 ตp:గీGo प్రుગ్ర్రీ| నిદ:ళ్థిశว:ఱ

Fig (1-147) Schematic showing the induced current flow in the start-winding relay-coil circuit of a capacitor-start motor with a potential-relay-controlled start winding.

Fig (1-148) A capacitor-start motor with a potential relay using a three-pole switch to isolate the start winding, preventing contact flutter.

 Start §్రీ Run ત్యరీి:

8. Two Voltage, Capacitor-Start Motor With Potential Relay

 గికెદ

Fig (1-150) ص్రీ $240-\mathrm{V}$ Start

 ใి, $\varepsilon_{3} \varepsilon_{0}$ हon

 9 Low Voltage ఫిธธ:M゚ Fig (1-

 ம

Fig (1-149) Dual-voltage capacitor-start motor with a potential relay. The relay is rated for low voltage.

Fig (1-150) A 240-volt capacitor-start motor with a potential relay. The coil of the relay is connected to the center connection of the start winding. The relay coil is rated for low voltage.

(a)

Fig (1-151) (a) Straight-line diagram (a) of a large capacitor-start motor using two low-voltage potential relays. Both the start and run windings are two circuit. The motor operates on 240 volts. To reverse, put T_{5} with T_{4}.

(b)

Fig (1-151) (b) Schematic of (a).
$120-\mathrm{V}$ uุ20

9. Single-Voltage, Three-lead, Reversible Capacitor-Start

 §రీ్షl:
 Gీళిశుల్ర్ర"

 య్యరరీ:sว: 0 亿 Fig (1-152) (a)

 ธmods

 సె่ n mీ

(a)

(b)

Fig (1-152) Schematic of a dual-voltage capacitor-start motor connected for high voltage, (a) clockwise rotation facing the end opposite the shaft, and (b) counterclockwise rotation.

Fig (1-153) A three-lead connection used on large capacitor-start motors. The motor is reversed by moving T_{5} to T_{4}.

10. Single-Voltage, Instantly Reversible Capacitor-Start Motor (鄱:

 ఎరহ్̨ఠిద్మ
 Start

1
Fig (1-154) A capacitor-start motor using a triple-pole, double throw switch for reversing.

Fig (1-155) An instantly reversible capacitor-start motor with triple-pole, double-throw switch for reversing.

 ఎई.mృ

Fig (1-156) دున్ర ચృ

 પన్రీ"

 158) ుబ్ర $T_{8} \# 1 ~ గ ి ~ G ర ం న ి న ి న ~$

 onejfir 4 Pole, 2 Throw, Centre off Toggle Switch ($00{ }^{\circ}$

Fig (1-159) A motor with the instant reversing stationary switch connected to a four-pole, double-throw, center-off reversing toggle switch with the switch thrown in the forward direction. Dotted lines show which terminals on the switch are joined by the switch blades in that direction.

11. Single-Voltage, Two-Speed Capacitor Motor

Capacitor-Start $6 \in \delta_{0} \rightarrow$ 反

 \$న్ల:గ్రిరం:ున్లు| Fig (1-161)

 (క్ళి) coీయున్రీ External Selector Switch ली High Speed

 ธจృวย: Switch ©ी Low Speed termi-

 ૦ીు (ગ్చి) coీ

Fig (1-162) (a) §§ (b)

 ヘั::ભీGoofe:

 ธ0ుวశวી Centrifugal device

Fig (1-160) Circuitry of the most commonly used stationary switch used in three winding, two-speed motors.

Fig (1-161) Schematic of the external selector switch, the stationary switch contacts, and the windings as they are connected.

Fig (1-162) (a) Two-speed capacitor-start motor schematic showing the current flow when it is starting at high speed.

Fig (1-162) (b) Two-speed capacitor-start motor schematic showing the current flow when it is running at high speed.

Fig (1-163) (a) §र्ट
(b)
 ธృว๘วใ External Speed Se-

 §్రీఁ60ు Stationary Switch

 બొలీున్రీ§్ర Centrifugal Device గ్రీృః:

 ธฺน็ం

Fig (1-163) (a) Two-speed capacitor-start motor schematic showing the current flow when the motor is started in low speed.

Fig (1-163) (b) Two-speed capacitor-start motor schematic showing the current flow when the motor is running at low speed.

Fig (1-163) (c) A typical layout of coils in a two-speed capacitor-start motor.隹

12. Single-Voltage, Two-Speed Consequent-Pole Motor

 [ర0 :uన్ల

Fig (1-164) Straight-line diagram of four- and eight-pole consequentpole motor, connected for high speed.

Fig (1-165) Straight-line diagram of a four- and eight-pole consequentpole motor connected for low speed.

 ికిఁృ

 Consequent

Fig (1-166) If the two poles of a two-pole motor are connected so that like polarity results, two more poles will be formed by the lines of force entering the frame.

Fig (1-167) Circular diagram of a two-speed capacitor-start motor.

 ఠөfం>>ધj:

(Permanent Split Capacitor Motors

2．ఫ్రిశว：$\sim \delta$ Oी｜：

1．Single－Voltage，Reversible \＆NonReversible Permanent Split Capacitor Motor

 fugal Switching System oolod
 －p：m：ธั่：uన్ర Capacitor－Start

 Capacitor－Start $6 \otimes$ 〇〇つ Start 8 ใุદз

 2య Electrolytic Capacitor
 20 Single Value Capacitor

Fig（1－168）Permanent－split，capacitor－run，reversible motor．

Fig（1－169）（a）Permanent－split，capacitor－run，nonreversible motor．

Capacitor-Start cosonsశ60:

Permanent-Split Capa -

 (b) ఠુદ

Fig (1-169) (b) Straight-line diagram of a permanent-split, capacitor-run motor and the terminal markings, as found on a refrigeration compressor.

Fig (1-170) Starting unit consisting of a single-pole, double-throw toggle switch, three electrolytic capacitors, and three toggle switches and leads connected to a refrigeration compressor motor.

2. Single-Voltage, Special-Duty Reversible, Permanent-Split Capacitor Motor

 Control Valve जj:

 ing శધु

 vల్

 भి Capacitor-Start 6esonsejp:

 © \$ి:oర600 Run

Fig (1-171) Special-duty, permanent-split, capacitor-run motor going forward because the capacitor is in series with winding, making (a) the start winding and (b) the run winding.

Fig (1-172) The same motor as in Fig. 1-171, with the capacitor in series with the winding (b). This makes (b) the start winding and (a) the run winding, and the motor will run in reverse.

Fig (1-173) Two-voltage permanent-split, capacitor-run motor connected short jumper.

3. Two-Voltage, Reversible, Permanent-Split Capacitor Motor

4. Two Speed, Single-Voltage, Permanent-Split Capacitor

טన్రీ§ీ:§ఠతి| Capacitor-

 sull Stator Magnetic Field

 §గ్రఔ

 య

Fig (1-174) (a) Two-speed permanent-split, capacitor-run motor connected for high speed. The low-speed winding is idle on high speed.

Fig (1-174) (b) Two-speed permanent-split capacitor-run motor connected for low speed. Both the high- and low-speed windings are energized in series.

 N

 ल్య్రీి:u

Connection (a) ァว:

 603 (Torque) 603 ($(\infty$) ふว:

 tor 6 fionsob: \$న్ర:on Start

Fig (1-175) Schematics showing the two start-winding connections used in a multispeed, permanent-split, capacitor-run motor. Connection (a) is across the high run winding, and connection (b) is across the line.

5. Three-Speed, Single-Voltage, Permanent-Split Capacitor

Motor ((

ๆీ

 §§: \ddagger §

5 Fig (1-177) ఎన్ర లబ్రీథ:
 బన్రీగ్రియ్రీ॥ અబయీః

 osgifus: Capacitor cefom గి

gixesombifk Start

Fig (1-176) Three-speed permanent-split, capacitor-run motor and external selector switch.

 จे00:600) Capacitor 60$\}$

 2న్రీ"

Gర0 :6unciop:uన్ల యన్ర

Fig (1-178) Schematic of a three-speed permanent-split capacitor motor connected for high speed.

Fig (1-179) Schematic of a three-speed permanent-split capacitor motor connected for medium speed.

Fig (1-180) Schematic of a three-speed permmanentsplit capacitor motor connected for low speed.

 హf

Terminal Markings-Multispeed Single-voltage Permanent-split Capacitor Motors
A. When multispeed single-voltage permanent-split capacitor motors are provided with terminal leads, the leads shall be identified by one of the following alternative terminal markings:

Note I —Parts shows within the dotted area are not a part of the motor. They are included in the diagram to clarify motor terminal connections made by the user.
Note II -For two speed motors, omit terminal 4 (red and the corresponding winding.
Fig (1-181) Terminal markings-multispeed single-voltage permanent-split capacitor motors.

Fig (1-182) Wiring diagram of a three-speed capacitor-run motor.

Two-Value Capacitor Motor (떠둑ํ

 $00: 600$ Capacitor $\mathfrak{\sim}$ Electrolytic Capacitor §̧§ Stationary

 の δ হุs

 20్రీ" Stationary Switch

Fig (1-184) Two-value capacitor motor showing the path of the current when the motor is running.

Fig (1-185) Schematic of a two-value capacitor motor using two capacitors.

Start-Winding Connections (Start 두зеззаппйи:)

 trolytic Capacitor $\infty \delta$ 疋

2.

1. Single-Voltage Start Winding with One Electrolytic Capacitor

Fig (1-186) Single-voltage start-winding connection. The voltage rating can be high or low.

 Ģ Run 8 B ε_{3} §§

 600)

Fig (1-187) Low voltage start-winding connected to the center of the run winding. This is a high-voltage motor. The electrolytic capacitor is rated for low voltage.

2. Single-Voltage Start Winding With Two Electrolytic Capacitors in Parallel

3. Two Electrolytic Capacitors Connected in Series

 vబ్రీ: గ:ంఠ్రి:600 Capacitor

 \$న: $: 600150$ Mfd Capacitor

Fig (1-188) Single-voltage start winding with two electrolytic capacitors in parallel.

 ω బ: Capacitor $\underset{\sim}{2} \operatorname{son}$ ర్యీీ: 60 ిికున్రీ|"Fig (1-189)

Fig (1-189) High-voltage start winding using two low-voltage capacitors in series.

4. Two Electrolytic Capacitors Connected in Series, in Parallel with Two Electrolytic Capacitors Connected in Series.

Fig (1-190) High-voltage start winding using two low-voltage capacitors in series, in parallel with two low-voltage capacitors in series.

5. Tow Electrolytic Capacitors Connected in Parallel, in Series with Two Electrolytic Capacitors Connected in Parallel.

લ

Fig (1-191) High-voltage winding with two capacitors connected in parallel, in series with two capacitors connected in parallel. The electrolytic capacitors all are low voltage.

6. Two-Voltage Start Winding with One Set of Stationary Switch Contacts.

Fig (1-192) Dual-voltage motor with a dual-voltage start winding controlled by a stationary switch with one set of contacts.

7. Two-Voltage Start Winding with Internally Connected Line Leads.

Fig (1-193) Dual-voltage capacitor-start motor with a dual-voltage start winding controlled by a stationary switch connected internally to T_{4}, T_{9} is connected internally to T_{1}.

Fig (1-193) סీ §

 ఎई: ఐీ
 Electrolytic Capacitor बjp:

 ున్ర Low Voltage Capacitor

Fig (1-194) Dual-voltage, capacitor-start motor with two sets of stationary switch contacts controlling the start winding.

8. Two-Voltage Start Winding with Two Stationary Switch Contacts.

9. One-Voltage Start Winding with a Separate Winding for an Oil-filled Capacitor

Fig (1-195) Two-value capacitor-start motor with a separate winding for the oil-filled capacitor.

10. One-Voltage Start Winding with a Potential Relay.

Fig (1-196) Two-value capacitor-start motor with a potential relay controlling the start winding.

11. Two-Voltage Start Winding with One Potential Relay

 ఎియ్"

Fig (1-197) Dual-voltage capacitor-start motor with a dual-voltage start winding controlled by a potential relay with one set of contacts. The potential relay is rated for low voltage.

Calculations for Rewinding and Reconnecting

 (1) గిఁฺฺు

 acu: Tup్రీని 600.

1. Rioీqulo

 10 Olunsup
 \$8,u్ర"

Rewinding for a Change in Voltage

RULE 1.

$$
\text { New turns }=\frac{\text { new voltage }}{\text { orig.voltage }} \times \text { orig. turns }
$$

RULE 2.

$$
\text { New c.m. area }=\frac{\text { orig. voltage }}{\text { new voltage }} \times \text { orig. c.m. area }
$$

RULE 3.

$$
\text { New capacitance in } \mu \mathrm{f}=\frac{(\text { orig. voltage })^{2}}{(\text { new voltage })^{2}} \times \text { ciig. } \mu \mathrm{f}
$$

DATA :

Run winding, span turns 38	$1-9$ 26	$1-5$	No. 15
	$1-8$	$1-6$	No. 19
Start winding, span 1-10	28	15	

Run winding, span 1-9
Run winding, new turns 76
Start winding, span 1-10
Start winding, new turns 28

1-7 1-5
5240
1-8 1-6
5630

Rule 2 గి శుబీโ్రు

$$
\begin{aligned}
\text { New c.m. area } & =\frac{\text { orig. voltage }}{\text { new voltage }} \times \text { orig. c.m. area } \\
& =\frac{115}{230}=\text { one-half c.m. area }
\end{aligned}
$$

R.W . :

$$
\begin{array}{ll}
\text { c.m. area of No. } 15 & =3.257 \text { c.m. } \\
\text { one-half of } 3.257 & =1.628 \\
1,628 \text { c.m. } & =\text { No. } 18
\end{array}
$$

S.W.:

$$
\begin{array}{ll}
\text { c.m. of No. } 19 & =1,288 \\
\text { one-half of } 1,288 & =644 \text { c.m. } \\
644 \text { c.m. area } & =\text { No. } 22
\end{array}
$$

$$
\begin{aligned}
\text { New capacitance in } \mu \mathrm{f} & =\frac{(\text { orig. voltage })^{2}}{(\text { new voltage })^{2}} \times \text { orig. } \mu \mathrm{f} \\
\text { New } \mu \mathrm{f} & =\frac{(115)^{2}}{(230)^{2}} \times 600 \mu \mathrm{f} \\
& =\frac{13,225}{52,900} \times \mu \mathrm{f}=\frac{1}{4} 600 \mu \mathrm{f}
\end{aligned}
$$

Reconnecting for a Change in Voltage

문าว:ธ

 טع

 .0బ్రు| Fig (1-198) §ీ (1-199)
 ద

Fig (1-198) Series connection of coils for 240-volt operation.

Fig (1-199) Parallel connection of coils for 120-volt operation. Voltage remains the same across each coil.
 4 จุळई: మN

Fig (1-200) Pitch data of a 36 -slot, four-pole motor. The poles of the starting winding are not the same; one pole has four coils, and the next has three.

Poles $\times 180^{\circ} /$ number of teeth in stator $=$ degrees per tooth
Degrees per tooth \times teeth encompassed by the coil
Sine of one-half the angle of the coil $=$ chord factor

$8 \times 20^{\circ}=160^{\circ}$
$\frac{1}{2} 160^{\circ}=80^{\circ}$

 అఫీడుమ

Effective Turns $=$ Actual Turns \times Chord Factor

 ผิตpดl||

Span	Actual Turns	Chord Factor		Effective Turns
$1-9$	30	0.98	$=$	29
$1-7$	30	0.87	$=$	26
$1-5$	18	0.64	$=$	12
$1-3$	20	0.34	$=$	$\frac{7}{74}$

 [్రీయున్రీ"

$$
\begin{aligned}
& \text { New eff. turns }=\frac{\text { orig. rpm }}{\text { new } \mathrm{rpm}} \times \text { orig. eff. turns }
\end{aligned}
$$

Eff. turns per pole $=\frac{\text { total turns }}{\text { poles }}=\frac{444}{6}=74$ eff. turns

Fig (1-201) Pitch data of a 36-slot, six-pole motor. The outer coils of each pole group lap one another and share the same slot.

STEP 4.

 92 Actual Turns प్రీలున్రీ॥

STEP 5.

Span	Turns	Chord Factor	Eff. Turns
$1-7$	23	1.0	23.0
$1-5$	46	0.87	40.0
$1-3$	23	0.50	11.5
	92		74.5

$$
\begin{aligned}
\text { New c.m. area } & =\frac{\text { new speed }}{\text { orig speed }} \times \text { c.m. of orig. wire } \\
& =\frac{1,200}{1,800} \times \text { c.m. }=\frac{2}{3} \text { c.m. of orig. wire }
\end{aligned}
$$

If the originally wire No. $17=2,048$ c.m., then

$$
\begin{aligned}
2 / 3 \times 2,048 & =1,365 \mathrm{c} . \mathrm{m} . \\
1,365 & =\text { No. } 19
\end{aligned}
$$

 ${ }^{\text {Q }}$
 ిీలుయ్రు"

Excessive-Duty Cycle

1. \ddagger §ว: $ి \mathfrak{T} โ ి$:
2. Bearing ๓:2్యว: 亿̧ర:
3. Capacitor o $\ddagger \stackrel{C}{2}: \theta\}$
4. ఫ్రిణుఃఇలీ:శ్రీ

5. ఐ:మ్ము:

 Open Circuit Gid

Fig (1-202) Capacitor with a broken connecting strap under the terminal board.

 Fig (1-202) ァoฺిદ:GY

The Right-Sized Capacitor

Fig (1-203) Locked rotor method for finding the right-sized capacitor for a motor. Voltmeter 2 should read 5 to 10 percent higher than voltmeter 1 .

Capacitor ぃథ์:

$$
C_{1}+C_{2}+C_{3}=C t
$$

 โ్రీృన్ర్"

$$
\text { In Series } \quad C_{t}=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} \ldots \text { etc. }}
$$

Two capacitors in series $\quad C_{t}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$

3. Tq[

 -uçofoll

Charge-discharg Test

Fig (1-204) Steps in testing a capacitor. Step 1. Connect capacitor, as shown, for a few seconds.

Fig (1-205) Step 2. Remove line wires and shortcircuit the terminals. A spark should be visible.

1800 Watt Resistor ફిన్నిદ:[్రి|:

 งన్ర:అ0

 Capacitor ヱ

- గి:ఇ゚:

Capacity Test

 Fig (1-206) శబిక: దిన్నిદ:

Fig (1-206) Test used to determine a capacitor's value.

$$
\text { Capacity in } \mu \mathrm{f}=\frac{159,300}{\text { frequency }} \times \frac{\text { amperes }}{\text { volts }}
$$

$\frac{159300}{60}$	$=2,655$
$\frac{2,655}{120}$	$=22$

$$
\text { Ampere } \times 22=\mu \mathrm{f}
$$

 ઋ

 Gig

Capacitor-Start cosom

 యన్ర: Electrolytic Capacitor

 డఠఇ\$ీరీలున్రీ| Oil Capacitor గ Electrolytic Capacitor §

Fig (1-207) Start-winding schematic of a two-value capacitor-start motor with four oil-filled capacitors and one electrolytic capacitor. Oil-filled capacitors are always connected in parallel to each other.

Fig (1-208) If an oil-filled capacitor becomes shorted, a high current will flow in the start winding. If the circuit protection does not function, the winding will burn.

Fig (1-209) ద్మદ G.

6. Capacitor ตp:గిన థీ:0ుઠ్రెદ:

Fig (1-209) Test panel. Test clips 1 and 2 are used for 120 -volt testing, and test clips 1 and 3 are used for 240 -volt testing.

Fig (1-210) Places to test for opens in a start winding.

 ธథ叩piఇp

Fig (1-211) Testing for the shorted circuit in a dual-voltage capacitor-start motor.

3. пеqع:a: Re:

Fig (1-212) First locate the grounded circuit with the test light, and then locate the grounded coil group with a limited current.

Fig (1-213) Comparison test used to locate partially shorted section of dual-voltage run winding.

5. 上Gొe:

Fig (1-214) Test rotor made from a small fan motor or a skeletontype motor.

 ฉบ్ุ:ంદ๙న్రీ|"

Ground efp:

 గ్రిరు

Fig (1-215) To determine whether winding is grounded, connect one test lead to the winding and the other test lead to the core. The lighted lamp indicates a ground.

Open-Circuits

 య్્રీ
 Fig (1-217) סీદ્દ

 2 గ్రిరీ

Fig (1-216) A circuit for testing winding for opens.

Fig (1-217) The effect of a defective pole. If the circuit is open, the lamp will not light.

Fig (1-218) The method of determining which pole is open-circuited.

Start iగ

Start $ి$ రి ${ }^{3}$ §§§

 बy): এmర6006

Fig (1-219) Testing the start winding circuit for opens.

Eg? ®p: 2

Fig (1-220) (a) The growler method of testing for shorts in the stator.

Fig (1-220) (b) Internal, external growler.

Fig（1－221）The compass method of testing for reversed poles．

酎还局：

Capacitor－Start §§ Split－Phase cefoncep：

ตยา

(5) Over Load ァఠిofఙరిદ:

(8) $\boldsymbol{\text { (iO:§ }}$

(1) Open Run Winding

(2) Open Start Winding

Fig (1-222) Starting the motor by mechanical means.
 Switch గిळ

 ธృగนి:ธ\$ว

 Hop
 -\&:حరఫ్ణ

 శ్જీ|๓

 १p

 ${ }^{\circ}{ }^{\text {nII }}$

 ఠுદધપ

7. Worn or Tight Sleeve Bearings

 ing s s

 C Fig (1-227) ळુદ

 -he) ळృ ఆ్\|ls

 డుృァวloృદ
 ตీธว:

Fig (1-228) The tool used for forcing bearings out of end plates.

 ున్రీ| ஹ్కిశวిట్\|l:

 (Lathe) ర్ర్మ

 ున్రీ"

 End Plate so్రిદ

Fig (1-229) A motor showing end plates not mounted properly. This prevents the rotor from turning. Use a mallet to tap plates into position.

Fig (1-230) The bent shaft of a rotor.

2. טoీగంీ:

5. ©:د్రว:600 Bearing जp:

Fig (1-231) Two turns making electrical contact.

 గి|ఁగ్రిఫీ

2. טֹీంీ:

 గईంగీબృ:గిగว

 శண్రీદరl|

 osoln

4. అ๘0ు

Starting (ग్రి)Running రి: (§) Connection

Fig (1-232) A connection mistake often made by beginners.

Connection बjp:ધృ\$6mวEG§0

 ฐई: $¢$

ఇీઆ

 ఠీદ

Fig (1-233) The rotor under test placed between the open ends of the growler core.

3. Start §§ Run
4. $0: 6 \$ 6000$ Bearing §§

 - 0 :ઝృ

 ใุరว

 Tైీ:Gీీ డఠకంm

 2నబ్రీ|

 గ్యి|ఃs

Fig (1-234) Miscellaneous diagrams.

Fig (1-235) A two-pole, capacitor motor with a one-circuit start and a one-circuit run winding.

Fig (1-236) A two-pole, capacitor start motor with a onecircuit start and a two-circuit run winding.

Fig (1-237) A two-pole, capacitor start motor with a one-circuit start and a one- and two-circuit run winding.

Chapter 2 Repulsion Type Motors

 د્ِરી"

(1) Repulsion 6 ovons

Repulsion Motor

Repulsion - Start Induction Motor

Fig (2-1) A repulsion-start induction motor.

Repulsion-Induction Motor

 دబ્ર"
 ఎబ్రీ| પ్రి.

 ヱอว:ธư

Construction (m²

Fig (2-2) Stator and winding of a repulsion-start, induction motor.

Fig (2-3) The rotor of a repulsion induction motor. The axial commutator has bars parallel to the shaft.

Fig (2-4) A rotor having a radial commutator with bars perpendicular to the shaft.

 శโీ|(6|l

 (2-4), Fig (2-5)

Fig (2-5) A partly dismantled rotor and parts of the centrifugal mechanism.

The Repulsion - Start Induction Motor

 ఇీ 6 โృ
 บ్่:บున్రీ|1
 ヱ

Operation of the Brush-Lifting, Repulsion-Start Induction Motor

The Centrifugal Short-Circuiting Device

(1) Governor Weights
(2) Short-Circuiting Necklace
(3) Spring Barrel
(4) Spring
(5) Push Rod
(6) Brush Holder and Brushes
 دబ్రీ"

 Short-Circuiting Necklace §؟

 ున్రీ"

Fig (2-6) An exploded view of the rotor of a repulsion-start, induction-run motor, showing the short-circuiting and brush-lifting mechanism.

 บన్రీ|"

Repulsion-Start cefom
 จुธ్రी

Fig (2-7) An exploded view of the rotor of a repulsion-start, induction-run motor. In this type, the brush holder is located in the end plate.

Brush Riding, Repulsion-Start Induction Motor

 దం:60n

Fig (2-8) A commutator for a brushriding, repulsion-start, induction-run motor.

Fig (2-9) The assembly of the short-circuiting device of a brush-riding, repulsion-start, induction-run motor.

Fig (2-11) Two brushes may be used for a four-pole motor if the armature is wave-wound or crossconnected.

 (ગ్.) Cross ఐmీ

Stator Windings and Connections (घєпाит

 ిథిలున్రీ"

Fig (2-12) A four-pole stator of a repulsion-start, induction-run motor, connected for 230 volts.

Fig (2-13) A four-pole stator connected for 115 volts. ఎన్రీ|"

Fig (2-14) A two-circuit connection for 230-volt operation (a). A four-circuit connection for 115 -volt operation (b).

Fig (2-15) A two-voltage motor. For 230 volts: connect T_{2} and T_{3} together; T_{1} to line lead, and T_{4} to line lead.

Fig (2-16) Internal connections of a six-pole repulsion motor stator.

 ఐسీ

Fig (2-17) A straight-line diagram of a six-pole stator with a short jumper or adjacent group connection.

Fig (2-18) A straight-line diagram of an eight-pole stator with long jumper connections.

Fig (2-19) An eight-pole stator that can be connected for 115 - or 230-volt operation.

Fig (2-20) Recording the position of the poles in a repulsion motor.
 §ి:(న)

Fig (2-21) The core section at the center of the pole. It is wider than other sections.

Fig (2-22) The method of recording data for a 24 -slot, repulsion-start, induction-run motor.

DATA SHEET FOR REPULSION MOTOR

Make

H.P.	R.P.M.	Volts	Amps.
Cycle	Type	Frame	Style
Temp;	Model	Serial	Phase

Rotor	Bars	Stats	Coil Pitch	Wave	
Lead Pitch	Turns	Coils / Slot	Size Wire		
Equalizer					
Stator	Poles		Slots	Size Wire	No. of Circuits

Slot No.

Armature Windings for Repulsion-Start Induction Motors

 60วธฺ巾

Fig (2-23) The armature of a repulsion-start, induction-run motor.

 د్దદ:ః

Fig (2-24) A radial commutator that is pressed on the armature shaft.

Fig (2-25) A radial commutator that screws onto the armature shaft.

 ిిદ

Fig (2-26) A lap winding with one coil per slot.

Fig (2-27) A wave winding with one coil per slot.

Fig (2-28) A lap winding with two coils per slot.

Fig (2-29) A wave winding with two coils per slot.

 Fig (2-28) §દ

Fig (2-30) A lap winding with three coils per slot.

Fig (2-31) A wave winding with three coils per slot.

 טโ్ర"
 ธ

 4 \quad మహ

 з๐ว: (Lap (or) Wave) 九G్pల

Fig (2-32) Step 1. Record the data for a two-coil per-slot repulsion armature.

Fig (2-33) (a) Step 2. Place beginning leads in adjoining commutator bars according to data and wind the proper number of turns, using two wires in hand. Cut the wires at the last turn and bend them over the core.

Fig (2-33) (b) Armature holder. ఎబ్రీ"

Fig (2-34) Step 3. Place the beginnings of coils 3 and 4 in bars 3 and 4 and start winding the coils, beginning one slot away from the first coils and using the same pitch as before.

Fig (2-35) Step 4. Place the top leads in the commutator bars after the armature is completely wound. For a lap winding, the top leads are placed in bars adjacent to the bottom leads of the same coil.

 4. ఇి|ర0

Equalizer or Cross-Connections

ఇ1మ

 ఇఫీต||com

$$
\text { Span }=\frac{\text { No of Bars }}{\text { No of Pairs of Poles }}
$$

Connection 2 U్రీ 1 §

Fig (2-36) Cross connections of commutator bars for a four-pole motor having 36 bars, pitch 1 and 19.

Fig (2-37) Cross connedtions of commutator bars for a six-pole motor having 36 bars, pitch 1 and 13.

Fig (2-38) Cross connections of commutator bars for an eight-pole motor having 36 bars, pitch 1 and 10.

 โైఁ:rวఖई:

Rewinding a Wave-Wound Armature

Commutator Pitch $=\frac{\text { No. of Bars - 1 }}{\text { No of Pair of Poles }}=\frac{45-1}{2}$
$=22$, or 1 and 23

Fig (2-39) A four-pole, wave-wound armature must have an odd number of bars in the commutator. If there is an even number of bars, two must be shorted.

Fig (2-40) A wave connection showing dead coil. This coil must remain unconnected when there are more coils than bars.

 रuen-msuajo

4
 ఠీ دబ్రు"

Fig (2-41) The method of placing a jumper between two bars to take the place of a coil, This is used when there is an even number of coils and one bar more than the number of coils.
 రిఁ,

 บృరయు工:011|

 cun msงapo మన్యు:యన్రీII

Reversing the Repulsion-Start Induction Motor

Fig (2-42) The first two coils of a wave-wound armature in place. Note that this armature is wound exactly as a lap armature, except that the beginning leads are placed away from the center of the coil.

Fig (2-43) The next two coils placed in the slots exactly as the first two coils, except that they are started in the next slot. The end leads are cut off and leff on the core.

Fig (2-44) How the top leads are placed in bars for a wave winding.

 Field

a.

Fig (2-45) If the coil is in a vertical plane, it will not move. If the coil is tilted off the vertical, it will tend to move.

Fig (2-46) Two closed circuits in an armature similar to two coils. No motion takes place if brushes are in a vertical or horizontal position.

Stationary Brush Holder

Fig (2-47) An end plate showing how the brush holder is moved to reverse the motor.
 د్రీీ Brush గ్

Fig (2-48) A frame with field poles off center.

Fig (2-49) The position of the frame in Fig. 2-48 reversed. This will cause the motor to run in the opposite direction.

 วว్|. 6 ¢ోం

Fig (2-50) A cartridge type of brush holder with both brushes in position for counterclockwise rotation.

Fig (2-51) A cartridge type of brush holder with both brushes in position for clockwise rotation.

Fig (2-52) Pair of wedge shaped brushes for a vertical commutator.

The Repulsion Motor

Fig (2-53) A four-pole repulsion motor. Note that the motor can be connected for two voltages, Four brushes are used. If the armature is wave-wound or cross-connected, two adjacent brushes may be used.

Compensating Winding

Slot No.

Fig (2-54) A compensated repulsion motor.

Fig (2-55) A layout of a six-pole compensated repulsion motor. Note the location of the compensating winding in relation to the main winding. The compensating winding is generally wound into the slots first.

The Repulsion-Induction Motor

 ి్రిદ \mathfrak{c} 毋

Fig (2-56) An armature of a repulsion-induction motor. Note slots and squirrel-cage winding.

Fig (2-57) A typical repulsion-induction motor.

Fig (2-58) A diagram of a compensated repulsion-induction motor.

Electrically Reversible Repulsion Motor

 6.

MG 1-2.52 Schematic Diagrams for Repulsion, Repulsion-Start Induction and Repulsion-Induction Motors

Reversible by Shifting Brushes	Single Voltage-Externally Reversible			
Single Voltage				
	P	L1	L2	Join
Counter- clockwise rotation T1 T5 T4, T8				
Clockwise rotation T1 T8 T4, T5				
L1 L2 Join		L1	L2	Insulate
Higher nameplate voltage T1 T4 T4, T3	Counterclockwise	T1	T5	T8
Lower nameplate voltage $\mathrm{T} 1, \mathrm{~T} 3 \mathrm{~T} 2, \mathrm{~T} 4 \quad$.	rotation			
	Clockwise rotation	T1	T8	T5

Fig (2-59) Schematic diagrams for repulsion, repulsion-start induction and repulsion induction motors.

 ి్రీ

Rewinding and Reconnecting Repulsion Motor

Rewinding for a Change in Voltage (跎 $327:$:

 "ŋn"

RULE (1)
New turns $\quad=\frac{\text { New Voltage }}{\text { orig. Voltage }} \times \quad$ orig. turns/coil

RULE (2)

$$
\text { New c.m. area }=\frac{\text { Orig. Voltage }}{\text { New Voltage }} \times \text { orig. c.m. area }
$$

Solution :

$$
\begin{aligned}
\text { New turns } & =\frac{230}{115} \times \text { orig. turns } \\
& =2 \times 8 \text { orig. turns }
\end{aligned}
$$

(

$$
\begin{aligned}
\text { New c.m. area } & =\frac{115}{230} \\
& \text { orig. c.m. Area } \\
& =\frac{1}{2} \quad \text { orig c.m. Area }
\end{aligned}
$$

 बर्टा"

 tor σ రీల

 6\$วलீర్రి:

 טીంగక్రీ:

Fig (2-60) Testing a repulsion motor for a shorted armature. Lift the brushes from the commutator; throw the switch on, and turn the armature by hand. If it turns freely, the armature is not shorted.

Test for Opens and Reverse

(d) Brush ap:os:6 $\$\left[\right.$ $0^{\mathcal{C}}$: (9)

(h) र्रీఠ606\$602 గईీG\|lemon (9), (12), (17)

(b) Necklace ((כֻ.) గ్ \$

(d) ∞ (§§mw

(c) Brush §̧

(f) $069 \mathrm{E}:[\mathrm{G} \delta 6 \$ 6003$ ocoson (19)

(b) Tर. $606 \$ 600$ (

(g) Push Rod Яన్రీళ్q:్ర్ర: (10)
(8) cosmm
(a) ४
(b) బ్ర $606 \leqslant 603$ 万ु

(e) $\quad ๓ ฺ$ Gరీ

2. Open Circuit in stator or Armature

Repulsion $6 e 503$ ®i

 బలీ

1.

Fig (2-61) A wrong connection for 230 volts. The current - flows through two adjacent poles in the same direction. The motor hums and does not run. To remedy, connect T_{2} and T_{3} together, L_{1} to T_{1} and T_{4} to L_{2}.
 งల్రీఁmวఁ์: T_{3} §

 ๒ねા

 Uncouv్n Repulsion-Start Induction cosom

Fig (2.63) Acommon mistake. There is no complete circuit across the line, and the motor neither operates nor hums.

Fig (2-62) Although connected for 115 volts, adjacent poles have the same polarity. Remedy by connecting T_{1}, and T_{3} to L_{1} and T_{2} and T_{4} to L_{2}.

9. Brushes Not Contacting Commutator (эqโ⿷匚દ

 ఇీজ|ધర

10. Brush Liffing From Commutator Too Quickly

 ిిలున్రీ|"

 Mృథథ్ిిఁున్రీ|"

12. Dirty Centrifugal Necklace or Commutator

13. Short Circuiting Necklace Broken or Not Operating Properly (ต刀?

 గఫీ||l|con

千

14. Centrifugal Mechanism Not Assembled Properly

 Fig (2-6) Oీદ્વర

ఐ్ర|rం[్రే

20. High Mica (

Chapter 3 Three - Phase Motors

Fig (3-1) A three-phase motor.

Fig (3-2) A stator of a three-phase motor.

Three-Phase $6 \in$ रुm

Fig (3-3) Rotor of a three-phase motor.

Fig (3-4) A wound rotor of a three-phase motor.

 ర్రిદ

Fig (3-6) (a) A four-pole, 36-slot stator. Each tooth equals 20°. This is a concentric-wound coil group showing the 90° and the 120° locations. The 120° slot is where the first coil of the next phase group with the same polarity is placed.

Fig (3-6) (b) A lap-wound coil group showing the 90° and the 120° location. The 120° slot is where the first coil of the next phase group with the same polarity is placed.
-600 \quad ดุ טన్రీ

 دబ్రీ"

Fig (3-7) ర్రీ రిఁీ,

1.

Fig (3-7) Concentric and lap coil placement 120° apart. Each coil group is the start of its phase and is of the same polarity.

Fig (3-8) The single-phase sine wave modified for illustration purposes.

Fig (3-9) A simplified three-phase sine wave showing where each phase starts.

 $\left(120^{\circ}\right)\left(\mathrm{H}_{1}\right.$))

 ర్రీ,

 دబ్రీII Fig (3-10) ગబ్ర

 ગబ્રీగ్రియున్రీ" Fig (311. a) ગున్ర్ Phase A

Fig (3-10) Illustration of how the coil groups or poles of a three-phase stator fit the three-phase sine wave.

Fig (3-11) (a) The A phase is energized as shown on sine wave, setting up a polarity in the stator that attracts the bar magnet.

Fig (3-11) (b) The B phase is energized, attracting the magnet as shown.

1.

Fig (3-11) (c) The C Phase is energized, attracting the magnet in this position.

Fig (3-11) (d) The A phase energized the same as in Fig. 3-11. a to complete one revolution.

Gícol counk

The Squirrel Cage Rotor

(玉选

Fig (3-12) Pole formed in the stator by the current in a coil group.

Fig (3-13) Current flowing in rotor bars at 98 percent rpm. Bars located at 90° from the stator pole centers are the center of the rotor poles.

 ఇన్రీ్నిธu:دన్ర్ర"

Fig (3-14) (a) Magnetic lines of force going through the rotor at synchronous speed.

Three-Phase สefom శగ్రీీీీ

2.

 Fiఠ§§ీ:uj:

Fig (3-14) (b) By the time the polarity reverses in the stator, the rotor has rotated to a position where it needs no magnetic reversal. The magnetic lines of force continue to flow through it in the same direction.

（2）శฉைీยృ：

（6）（Pitch）ヱกুวァธロ：

DATA SHEET FOR POLYPHASE MOTOR

Make		Serial					Cycle			
H.P.	R.P.M.			Volts		Amps				Frame
Temp.	Duty			S.F.		Code				Design
Model	Type			Style		Enclosure				Hz
Efficiency		Power factor				Bearings S1. BB. \#				
Connection		Turns			Wire size			Wires in mult.		
Pitch		Coil ext.			No. of groups				No.	of poles
Coils / Group		No. of slots				Lap		Concentric		
Remarks:										

Slot \# 14203450678101112131415161718192021222324252627282930313233343536 Layer \# i Layer \# 2

Layer \# 3
Layer \#4

CONCENTRIC COIL PLACEMENT FOR LAYERED WINDINGS.
A sample data sheet for rewinding three-phase motors.

Nameplates For Dual-Voltage Three-Phase Motors

Design (giac:
Fig (3-15) Nameplate.

: Code (eqвз)

Rating (зптโด

Frame (ㄲุル뚠)

$$
\frac{\text { Watts }}{\text { Volts } \times \text { Amps }}=\text { Power Factor }
$$

 دబ్రు"
$\frac{\text { Wattless Power }}{\text { Applied Voltage }}=$ The amps of Wattless Power (or) Magnetizing amps.

 (3-16) ఠ్రદ G్ర

Fig (3-16). How to count the span or pitch of a coil. The coil, in lap windings all have the same span.

Fig (3-17) Stripping the stator by cutting each coil on one side and pulling from the other side.

Fig (3-18) Motor using cuffed insultion in slots.

Fig (3-19) A partial view of the coils in the slots of a lap winding.

Fig (3-20) A partial view of the coils in the slots of a concentric of chin winding.

Coil Types for Lap Windings (зат

Fig (3-21) A loop-forming head for formed coils.

SPECIFICATIONS:
Largest loop length using coil ond holder: 32:
 Largest length across core: $\mathbf{2 2}^{\prime \prime}$ Smallest $3^{\prime \prime}$. Knuckle kick-up 0 to $2-1 / 2$
Included angle range: 0 to 80 degrees Width of sproed:

Minimum at 0 degree included angle: $1^{\prime \prime}$ 80 degres included angle: $2-3 / 4^{2}$ Maximum at 0 degree included angle: 10^{-}
80 degres included angle: $12-3 / 4^{\circ 0}$ Jaw holding capacity: Maximum $1 / 2^{\prime \prime} \mathrm{W}, \times 7 / 8^{\prime \prime} \mathrm{H}$
Dimensions: $33^{\circ} \mathrm{W}, \times 48^{\circ \prime} \mathrm{L} . \times 48^{\prime \prime} \mathrm{H}$.
Net Weight: 265 Lbe.
3ross Woight: 320 Lbs

Fig (3-22) A coil-forming machine.

Fig (3-23) A taping machine.

(a) Open-slot stator

(b) Semiclosed slot stator

Fig (3-24) Two types of slots found in the stators of three-phase motor

Fig (3-25) One side of a coil spread so that it can be fed into the slot.

Fig (3-26) Midget coil winding head.

Fig (3-27) Coil winding drive and three-phase head.

Fig (3-28) Three-phase head for rounded coils.

Fig (3-29) Method of winding coils in groups.

Fig (3-30) A stator of a three-phase motor with all the coils in their slots.

Fig (3-31) A portion of a three-phase winding as it would appear if the slots were laid flat.

 ిุిళ

 शุ \cos Eృఅ§0 ヘั:ం§:

Fig (3-33) The coils of small motors may be wound in a rectangular shape, which is later formed into a diamond shape by pulling at the center of opposite ends.

Group Winding (æ઼ீo̊.

 wên "Connecting the Three-Phase, Lap Wound Motor" of

Placing the Coils in Slots

 శఠిశఠโీగి Fig (3-35) ర్రદ్రర

 ఎబ్ర

Fig (3-34) This is a group-wound, three-coils-per-group coil group.

Fig (3-35) One side of a coil spread so that it can be fed into the slot.

 జ్ઠેચચ્પ્રી"

Fig (3-36) Starting to place coils in slots.

First coil of winding in place

Fig (3-37) The method of placing one side of each coil in slot.

 ใిళsE00

Fig (3-38) Installing groups of 3 coils into the slots.

 ヱగ్రీీ్రీొన్రు"

1. - Bottom coil side 2. - Slip separator over bottom 3. - Place top coil in slot

Fig (3-39) The method of piacing the sides of two coils in a slot with insulation.

 Phase শ్సీ

Fig (3-40) Winding and insulating a three-phase stator.

Connecting Three-Phase, Lap-Wound Motors

 ดิษษญ์"

RULE 1

puos - $\frac{36 \text { Coils }}{3 \text { Phases }}=12$ Coils per phase
ヱว:çi:600 Three-Phase 60 र

Fig (3-41) A diagram of a star connection. This is also called aY connection.

 ァணุ:พ

Fig (3-42) A diagram of a delta connection.

Fig (3-43) A 36-coil, three-phase motor with coils divided into poles.
 ఠీદ్రీ

RULE 2

 ๑วๆษమ్రీ"
pues -
$\frac{36 \text { Coils }}{4 \text { Poles }}=9$ Coil Per Pole

Fig (3-44) The true shape of coils shown in Fig. 3-43.

Fig (3-45) A simplified diagram of the coils in a three-phase, four-pole motor.

Fig (3-48) (b) Three coils are group wound. Connections between coils are automatically made during the winding process

RULE 3

RULE 4

Coils Per Group $=\frac{\text { Total number of coils }}{\text { number of groups }}=\frac{36}{12}=3$

Wye Connection (룰.

 (36) எGొTE:

 ァంฺిిఁ:પ్రీీన్రు|"

 Fig (3-49) ס్ఠદ్రా

 B Phase §
 งขฺ"
(3) C Phase $\underset{\sim}{\circ}$ A Phase గ़े

 วે૧Өల్రీII Phase C గீ Fig (3-51)
 (4) Phase A §̧¢̣ C ఐைీつుగి

 ఐీ

 "A Skip-Group Connection"

 బీ:

Fig (3-51) Phase C connected exactly like phase A and connected before phase B to simplify connections.

Fig (3-52) The current flow in the B phase is opposite to the current flow in both the A and C phase. This is shown by the arrows under each group.

Fig (3-53) (a) Connections of groups of phase A.

Fig (3-53) (b) Phase C connected exactly like phase A and connected *before phase B to simplify connections.

Single-Phase Run ర్ఒిદీఁీశంగ్రిદ:

 §ీ్ర 4 । 1 §

Fig (3-53) (c) The current flow in the B phase is the opposite to the current flow in both the A and C phases. This is accomplished by starting the B phase at the fifth group or the second B-phase group.

Fig (3-53) (d) A complete diagram of a three-phase, four-pole, one-wye (1Y) or series-wye-connected motor. ఐగీక్రీఁయయ్రు"

Fig (3-54) (a) A circular diagram showing the A phase only.
Fig (3-54) (b) Phase C connect 1 exactly like phase A before phase B to simplify connections.

Fig. (3-54) (c) The current flow in the B phase is the opposite to the current flow in both the A and C phase. This is accomplished by starting the B phase at the fifth group or the second B phase group.

Fig (3-54) (d) A circular diagram putting all three phases together. A one-wye short jumper with connections starting at the 6 o'clock position and the groups numbers 1 through 12.

 ๆ|

Fig (3-55) A schematic diagram of a three-phase, four-pole, series star (1Y) motor.

 గికీఁు

Fig (3-56) A schematic diagram of a threephase, four-pole series delta motor.

 [วం: mo:

Three-Phase । ị:(ヘ) (4) ฉ ธย

 602న్రీ|"

Fig (3-57) (a) The A Phase connections for a one-delta, four-pole motor.

Fig (3-57) (b) C Phase connections are the same as for the A phase

A Phase ली శண્ุ:గొి C Phase

Fig (3-57) (c) The B phase connected with polarity the opposite of the A and C phases.

Fig (3-57) (d) A complete diagram of a three-phase, one-delta, four-pole, short jumper motor.

Fig (3-58) (a) The connections of the A phase in a circular diagram.

Fig (3-58) (b) Phase C connected in the same way as for the A phase.

Fig (3-58) (c) Phase B starting at the fifth group, thereby reversing the B phase polarity.

Fig (3-58) (d) A circular diagram of a one-delta (series-delta), four-pole, short jumper connection.

Fig (3-59) A three-phase, series-wye connection in which the first phase B coil group is not skipped. Phase A and phase C are connected in the same way as when the skip group method is used.

Fig (3-60) A four-pole, series (1Y) connection. In this connection the groups of each phase are connected so that there is one path for the current to follow.
comesupooniciups § s sp
 2 Y Connection) ली Phase A

 Fig (3-62. b) ァoุిદ: Phase C

 Fig (3-62. d) ód Three-Phasel

Fig (3-62) (a) Phase A connection of a two-wye, four-pole, short jumper motor.

Fig (3-62) (b) Phase Connection of a two-wye, four-pole, short jumper motor.

 โై:ฐโీణిఁిడు

Fig (3-62) (c) Phase B connection of a two-wye, four-pole, short jumper motor.

Fig (3-62) (d) Three-phase, two-wye, four-pole, short jumper motor.

Fig (3-63) A four-pole, two-wye, short jumper, three-phase diagram.

Fig (3-64) A two-pole, series star (1Y) connection. If only one group is connected to each line, then it is a series star (1Y) connection.

 ט

 wox Three-Phase cofomaj:

 इలీఁฒ Three-Phase cesfon

 Poles $\times 3$ Phase $=6$ Groups

Fig (3-65) Straight-line diagram of a series-star or wye (1Y) connection.

Fig (3-66) Four-pole series star (1Y) connection. One group connected to each line lead.

Fig (3-67) Both methods of connection shown above have each line lead connected to two groups, but the parallel star connection has six groups connected together in two separate wyes.

Fig (3-68) A three-parallel star (3Y) connection. Each line lead connect to three groups.

 วิథిఁఁున్రు"

Fig (3-69) (A) shows a four-pole, two-parallel delta $2(\Delta)$ connection with each line lead connected to four groups. (B) shows an eight-pole, four-parallel star (4 Y) connection. Both methods of connection shown have each line lead connected to four groups, but the four-parallel star (4Y) connection has twelve groups connected together.
 \$న్ర:~ీ: ఎీ์ઘ

 బ్ద్:ున్రీ"

Fig (3-70) The four-pole, two-parallel star (2Y) connection has six jumpers.

$$
\frac{\text { Slots }}{\text { Poles }}+1 \times 0.8=\text { Span }
$$

$$
\frac{\text { Slots }}{\text { Poles }}+1=\text { Full Span }
$$

Connecting Three-Phase Motors For Two Voltages

 §ธశశశ
 \$నీ:mి Fig (3-73) ఠ్రદ్ర్ర

Fig (3-71) Four coils connected in series for 460 -volt line. The voltage in each coil is 115.

Fig (3-72) Four coils connected two-parallel for a 230 -volt line. Each coil still receives 115 volts.

Fig (3-73) The four coils of Fig. 3-72 connected for 115 -volt operation.

Fig (3-74) Series connection of coils for 460volt operation.

Fig (3-75) Two sets of coils in parallel for 230-volt operation.

Fig (3-77) A three-phase, four-pole, two-parallel star (2 Y) connection with one star point.

Fig (3-76) A three-phase, four-pole, series star (1Y) connection.

Fig (3-78) A three-phase, four pole two-parallel star $(2 \mathrm{Y})$ connection with two star points.

Connecting a Two-Voltage Wye Motor

(

 さi:

 ธuรळつ

 ตృ:

Fig (3-79) Markings and connections for Y connected dual-voltage motor.

Fig (3-80) (a) The spiral method of finding the proper numbers for a nine-lead, one-and two-wye schematic.

Fig (3-80) (b) The spiral method of finding the proper numbers for a nine-lead, one and two-delta schematic.

Fig (3-81) A two-voltage star (wye) motor with groups connected in series for high voltage operations.

Fig (3-82) A two-voltage star (wye) motor with groups connected in parallel for low voltage. The common connection of 4,5 and 6 forms an external star.

Fig (3-83) صున్ర Fig (3-81)

 Gీఠગుల్రీI Fig (3-84) ગున్రీ Three-

 $\infty:$ ఫ్ర: प్రలున్రీII

Fig (3-83) A three-phase, four-pole, two-voltage, short jumper, one- and two-wye motor connected for high voltage. Each phase is shown separately above and also connected for high voltage.

Fig (3-83) A three-phase, four-pole, two-voltage, short jumper, one- and two-wye motor connected for high voltage. Each phase is shown separately above and also connected for high voltage. (Continue)

Fig (3-84) A circular diagram of a four-pole, two-voltage, short jumper, one- and two-wye motor.

Fig (3-84) A circular diagram of a four-pole, two-voltage, short jumper, one- and two-wye motor. (Continue)

Connecting a Two-Voltage Delta Motor

Fig (3-86) (Left) A two-voltage delta connection with groups in series for high-voltage operation. (Right) A two-voltage delta connection with groups in parallel for low-voltage operation.

Fig (3-87) A four-pole, two-voltage, short jumper, one- and two-delta motor connected for high voltage.

Voltage	L_{1}	L_{2}	L_{3}	Tie Together
High	T_{1}	T_{2}	T_{3}	$T_{4} T_{5} T_{6}$
Low	$T_{1} T_{6}$	$T_{2} T_{4}$	$T_{3} T_{5}$	

Fig (3-88) A wye-delta-connected dual-voltage motor with schematic and connection directions.

 మ్రు:థిఁియన్ర్|"

 ఎఠీఇంన్రీ:

(a)

(b)

Fig (3-89) (a) \& (b). (a) shows the B Phase with the jumper going back to the second group. (b) shows a straight line diagram of this short jumper one and two wye connection.

 ర్రీ

 (Δ), 2 (Δ), 1 §ీ

Fig (3-90) A circular diagram of a one- and two-wye, four-pole, short jumper motor with the B phase connected as described in Fig. 3-89 b.

 \%i:(న) §ఠহૃ

Fig (3-91) (a) A two-pole, two-wye motor.

Three-Phase శணைయీலృ:

 ున్రీ

(1) \$ิ:ธธీ ఐई.M్రీை
 ญ่อ)
(2) Phase B $\propto \sim$ Phase A § $£$

 คิดงญ์"
(4) טంీนీ์: (1) จిలిం్రీ దనై
 งख્"

 प్రీి్ిీలుల్ర

 6 ฉุ ธชิం

Fig (3-91) (b) A two-pole, one- and two-wye motor.

Fig (3-91) (c) A two-pole, dual-voltage, wye-delta motor.

Fig (3-91) (d) A two-pole, one-delta motor.

Fig (3-91) (e) A two-pole, two-delta motor. Both T, leads can be brought out of the motor on one lead, as can the T_{2} and T_{3} leads.

Fig (3-91) (f) A two-pole, one- and two-delta motor.

Fig (3-92) (a) A four-pole, four-wye connection.

Fig (3-92) (b) A four-pole, two- and four-wye, short jumper connection.

Fig (3-92) (c) A four-pole, four-delta connection.

Fig (3-92) (d) A four-pole, two- and four-delta, short jumper connection.

Fig (3-92) (e) A four-pole, short jumper connection with the B phase connection starting at the opposite end, thereby reversing its polar.ty with respect to the A and C Phase.

Long Jumper Connections (ㅁㅂㅂ

 Fig (3-93. c) 1 న్ర C Phase గియ

 95. a) ఎబ్రీ 2 Y, (3-95. b) ચయన్ర

Fig (3-93) (a) Phase A of a four-pole, one-wye, long jumper motor.

Fig (3-93) (b) Phase B of a four-pole, one-wye, long jumper motor.

Fig (3-93) (c) Phase C of a four-pole, one-wye, long jumper motor.

Fig (3-94) A four-pole, one-wye, long jumper connection.

 Winding Start \$ల్ర:\%

 pere Ģई. 60: iismoc:

 630 Air Gap oธைைை

 ²్రీ|"

Fig (3-95) (d) A four-pole, wye-delta, long jumper connection. గ్రియ)

 605030p:moitio in

Fig (3-96) (a) A four-pole, one-delta, long jumper connection.

Fig (3-96) (b) A four-pole, two-delta, long jumper connection.

Fig (3-96) (c) A four-pole, one- and two-delta, long jumper connection.

Fig (3-96) (d) A four-pole, two- and four-delta, long jumper connection.

Three-Phase Concentric Windings

 (Concentric Winding) ァrêj|:베|:

Fig (3-97) A circular diagram of a three-layer concenctric winding with coil groups containing one and two coils per group. Each layer is a complete phase and is shown as it would be placed in a stator.

Fig (3-98) A straight-line diagram of the motor illustrated in Fig. 3-97. This is a three-layer concentric winding, with each layer containing a complete phase.

Fig (3-99) of $\mathcal{\varepsilon}$
 థโర

Fig (3-99) A circular diagram of a four-layer concentric winding with coil groups containing one and two coils per group. This motor can be rewound with the same arrangement as in Fig. 3-97 with little difference electrically.

Fig (3-100) A straight-line illustration of a four-layer winding, as shown in Fig. 3-99. The first and fourth layer have one coil per group, and the second and third layer have two coils per group.

Fig (3-101). A four-pole concentric winding with two coils per group. The outside coils of each group share the slot.

 థీఁణం Fig (3-102) oీ

ఐీ inside coils of each group share the slot.

Fig (3-103) A four-pole, concentric winding with two coils per group. This pattern has an empty slot on each side of the outer coil of each group. The inside coils share the slot.

 60అ్షృ Fig (3-104) rợc: (19), (1-7) § నబ్రీ"

 ఫీన్కిఙరుయ్ర్ర"
(5) Consequent Pole Concentic ${ }_{2} \varepsilon_{3} \delta \mathcal{R}_{2}$ Fig $(3-105)$) [im:uన్రీ|"

Fig (3-104) A four-pole, concentric winding with three coils per group, all sharing the slot.

Fig (3-105) A straight-line diagram of a four-pole, consequent-pole winding.

 (3-107) a, b, c, d, e ¢ ¢̧ fol?
 ञmi:Glit:(s)cusomw Chapter

 Guaం:0ીopu"

Fig (3-106) A circular diagram of a six-coil group, four-pole, consequent pole winding, showing where the coils are placed in the stator.

Fig (3-107) (a) A four-pole, consequent-pole, one-wye connection.

Fig (3-107) (c) A four-pole, consequent-pole, one- and two-wye connection.

Fig (3-107) (b) A four-pole, consequent-pole, two-wye connection.

Fig (3-107) (d) A four-pole, consequent-pole, one-delta connection.

Fig (3-107) (e) A four-pole, consequent-pole, twodelta connection. Like numbers are joined and brought out of the motor on one lead.

Fig (3-107) (f) A four-pole, consequent-pole, one- and two-delta connection.
(6) Concentric ${ }_{2} \varepsilon_{3} \mathcal{C}^{8}$

 ๔ గ్రెఁీ:ผ్ Fig (3-108)

Fig (3-108) A four-pole concentric winding with each group split into two sections. Each section is a circuit when connected, as in Fig. 3-109.

Fig (3-109) A four-pole, concentric winding, with each coil group split into two sections. It is connected for a part-winding start and is two wye.

Fig (3-110) (a) Phase A connections, starting at the six o'clock position and proceeding to the right in a counterclockwise direction.

Fig (3-110) (b) Start of the B phase at 120° to the right of the start of the A phase. This is the first coil located to the right of center or the 90° spot of the A phase and is connected at the same polarity as the first coil of the A phase.

 ఎ

 คุจบన్రీ Part Winding Start

 G(GO: Fig (3-112) دِన్ర Split

 पسన్రీ"

 Phase ตी గ్|

 తి:دన్రీ|i

Fig (3-110) (c) Start of the C phase at 120° to the right of the start of the B phase. This is the first coil located to the right of center or the 90° spot of the B phase and is connected at the same polarity as is the first coil of the B phase.

Fig (3-111) A four-pole, short jumper, concentric, one- and two-wye connection diagram.

Fig (3-112) A four-pole, concentric winding, with each coil group split into two sections and connected one and two wye.

Fig (3-113) A continuous winding head for small concentric coil groups. This head winds one complete phase with no connections between groups.

How to Recognize a Connection

Abstract

Fig (3-114) (a) shows a four-pole, one= and two-delta connection with two groups fastened to T_{1}, T_{2}, and T_{3} and one group to each of the rest. (b) is a four-pole, two- and four-delta connection with four groups fastened to T_{1}, T_{2} and T_{3} and two groups each to the rest of the leads.

 ગ్ని.

Fig (3-115) (a) shows a four-pole, one- and two-wye connection with one group fastened to each lead and one-wye point. (b) is a four-pole two- and four-wye connection with two groups fastened to each lead and six groups tied together, forming two wyes.

 กัొํ:

Fig (3-116) (a) A 12-lead schematic, sometimes used for a part-winding start.

Fig (3-116) (b) The voltage connections possible with a 12-lead motor.

 Part Winding Start $6 \bullet$ रิ0

 बরी
 T_{8} §ీ

Fig (3-117) A two-wye, six-lead motor that can be connected for a partwinding start.

Fig (3-118) (a) A two-pole concentric winding with six coil groups with six coils per group.

Fig (3-118) (b) A four-pole concentric winding that is consequent pole. This winding also has six coil groups, like the two-pole winding.

3

Part-Winding-Start Motors

 Winding Start ${ }^{2}$

 (

(a) Terminal markings 9 lead star (b)

Step	L_{1}	L_{2}	L_{3}	Tie Together	
1	T_{1}	T_{2}	T_{3}	$T_{4} T_{5} T_{6}$	
2	$T_{1} T_{7}$	$T_{2} T_{8}$	$T_{3} T_{9}$	$T_{4} T_{5} T_{6}$	
Connector Table					

Fig (3-119) (a) and (b). Nine-lead wye connected part-winding motor. This connection can be used on any nine-lead dual-voltage motor.

Fig (3-119 a a , b) §ీ

 T_{3} §ీ

Terminal markings - 9 lead delta

Step	L_{1}	L_{2}	L_{3}	T_{i} Topether
1	$T_{1} T_{6}$	$T_{2} T_{4}$	$T_{3} T_{3}$	
2	$T_{1} T_{6} T_{3}$	$T_{2} T_{4} T_{4}$	$T_{3} T_{3} T_{2}$	

Step	L,	L_{2}	L)	Tie Together		
1	T_{1}	$\mathrm{T}_{4} \mathrm{~T}_{\mathbf{2}}$	T,	$\mathrm{T}_{4} \mathrm{~T}_{3}$	$\mathrm{T}_{3} \mathrm{~T}_{5}$	$\mathrm{T}_{6} \mathrm{~T}^{\text {, }}$
2	$T_{1} \mathrm{~T}_{6}$	$\mathrm{T}_{4} \mathrm{~T}_{2}$	$\mathrm{T}_{9} \mathrm{~T}_{3}$	$\mathrm{T}_{4} \mathrm{~T}_{4}$	Ts $\mathrm{T}_{\text {, }}$	$\mathrm{T}_{6} \mathrm{~T}^{\prime}$,

Fig (3-120) (a) Two methods of connecting a nine-lead delta part-winding motor.

 ણి. ヘల్రీఃm

Step	L_{1}	L_{2}	L_{3}
1	$T_{1} T_{7} T_{12}$	$T_{2} T_{4} T_{10}$	$T_{5} T_{9} T_{11}$
2	$T_{1} T_{7} T_{12} T_{6}$	$T_{2} T_{4} T_{10} T_{8}$	$T_{5} T_{9} T_{11} T_{3}$

Fig (3-120) (b) A 12-lead, delta motor connection for a 2/3 part-winding start. The outside arrows indicate the windings energized in the first step, and the inside arrows are the windings energized on the second step.

Winding The Part-Winding-Start Motor

Fig (3-121) A six-lead, four-pole, long jumper, two-wye connection that can be used for a part-winding start.

Fig (3-122) A 12-lead, four-pole, long jumper, one- and two-delta connection that can be used as part winding start for $1 / 2$ or $2 / 3$ winding. This connection can also be used as wye start, delta run (wye-delta), and one and two wye.

Identifying The Nine Leads Of Untagged Three-Phase, Dual-Voltage, Wye-Connected Motors

STEP (1)

 ヱం్మీ
 $\mathrm{T}_{7}, \mathrm{~T}_{8}$ §§ T_{9} గి.

Fig (3-123) (a) Testing each circuit for continuity.

Fig (3-123) (b) Run motor using 230 volts 3 phase across T_{7}, T_{8}, T_{9} to test voltage across each section.

STEP (2)

 శป్: G|

(B) Connecting the Two-Lead Circuits to Their Proper Phase

STEP (1)

STEP (2)

STEP (3)

STEP (4)

Approx. 340 volts

Fig (3-123) (c) Testing for correct connections in each phase.

STEP (5)

శూలగీजృ:

Untagged Dual-Voltage Delta-Connected Motor

(C) טంీయీ:बృ:గ్ని ులీమిఁిఁ Phase बj:

STEP (1)

Fig (3-124) (a) Test for 3 circuits of 3 leads each.

Fig (3-124) (b) Measuring resistance with ohmmeter resistance between T_{9} and $T_{4}=2$ times that of T_{9} and T_{1}.

STEP (1)

 Fig (3-124. b) గి గి:mっ:థీ T_{4} §ీ

STEP (2)

(C) Connecting The Circuits in the Proper Phases

STEP (1)

Fig (3-124) (c) Connecting circuits to their proper phases.

STEP (2)

 ฉைనయన్రీ"

STEP (3)

STEP (4)

STEP (5)

Two Speed, Three-Phase Motors

 Three-Phase susom ojp:en ou §ీీ:uన్ర

Fig (3-125) The polarity of the A phase of a normal long jumper, fourpole motor.

Fig (3-126) The polarity of the A phase of a consequent-pole, twospeed, constant-torque motor connected for low speed. All four poles have the same polarity, and so eight poles will form in the stator.

 จฐ.โิจబ్రీ"
 §ఠఠఠ్\|l:ci:p

Fig (3-127) The polarity of the A phase of a constant-torque motor when connected two wye for high speed. All onewinding, two-speed motors are connected long jumper.

 4 ฉ (

Fig (3-128) Phase A connected series-delta for eight-pole operation. The current flows through the groups in the direction of the arrows. This type of motor will have the same torque at both speeds.

ఎన్రీ్రీ

 (Torque) 60 ?(m) ఔ:గ్షఫ

Fig（3－129）A two speed，constant－torque schematic connected for（a）high speed，four poles，and two wye and（b） for low speed，eight poles，and one delta．The arrows show the path from L_{1} to L_{2} ．
 ని．

 ธuncuల్నీీ：

 ธm

 cosomel Nameplate oુ

Fig（3－130．a）د⿰亻弋工 のన్ర $6036003(m) 1 \stackrel{i}{i}:(\Omega) 4$ ？Phase

 B Phase Gidel：Fig（3－130．c）

Fig（3－130）（a）Phase A of a constant－torque motor connected one delta for low speed．

Fig（3－130）（b）Phase B of a constant－torque motor connected one delta for low speed．

Fig（3－130）（c）Phase C of a constant－torque motor，connected one delta for low speed． ఘ：：ఇొ

Fig (3-130) (d) A four- and eight-pole constant-torque motor connected for low speed. T_{4}, T_{5} and T_{6} are separately insulated for this connection.

Fig (3-130) (e) A four-pole, constant-torque two-speed motor. The parallel-star (2 Y) connection is used for high-speed operation; the series-delta for low-speed operation. T_{4}, T_{5}, T_{6} to line; T_{1}, T_{2}, T_{3} connected together, for high speed. T_{1}, T_{2}, T_{3} to line; T_{4}, T_{5}, T_{6} not connected, for low speed.

Fig (3-132. a) ©

 §ई: (1800 rpm) . ळీ

 งన్రీన్న:శద్నగ 1Δ ァ

 دల్రీ॥ Fig (3-132. b) ァை

 ৩ీీ: 2 ఇฐీ

 (Torque) $\cos (\infty)$ m:

Fig (3-131) (a) Phase A of a one-delta, four-pole motor.

Fig (3-131) (b) Phase A of a constant-horsepower, one-delta, two-wye, four- and eight-pole motor connected four poles, one delta.

Fig (3-131) (c) Phase A of a constant-horsepower, one-delta, two-wye, fourand eight-pole motor connected eight poles, two wye.

a) Four-poles

b) Eight-poles

Fig (3-132) A two-speed, constant-horsepower schematic diagram, connected (a) for high speed, four poles, and series-delta and (b) for low speed, eight poles, and two wye.

 わఠ్య

Fig (3-133) (a) Phase A of a constant-horsepower motor, connected one delta and four pole, for high speed. m ตึฐీ: m: ఎఠీ سన్రీG్రీว దీ

 Phase । Fig (3-133. b) ס్ઠ B Phase । Fig (3-133.c) ण్ఠर C Phase §ट़ Fig (3-133. d) ס్రీ

Fig (3-133. d) ס્ઠ ర્ટ::(ふ)

Fig (3-133) (b) Phase B of a constant-horsepower motor, connected one delta for high speed.

Fig (3-133) (c) Phase C of a constant-horsepower motor, connected one delta for high speed.

Fig (3-133) (d) A four- and eight-pole constant-horsepower motor, connected one delta for high speed. T_{1}, T_{2} and T_{3} are separately insulated for this connection.

Fig (3-134) (a) A two- and four-pole, constant-torque motor. The center lead connects to the left lead of the remaining group, making it the same polarity. This doubles the poles, making the one-delta connection for low speed with four poles.

Fig (3-134) (b) A two- and four-pole, constanthorsepower motor. The center lead connects to the right lead of the remaining group, making it the opposite polarity. When this connection is one delta, the motor will be for high speed with two poles.

 -600

Fig (3-136. a) د્ِల్ర 6 §ృ 12

Fig (3-135) (a) Phase A of a constant-torque motor. The center lead connects to the group to the left or back to the group adjacent to the starting group of the phase. When this four-and eight-pole connection is one delta, it will have eight poles.

Fig (3-135) (b) Phase A of a constant-horsepower motor. The center lead connects to the adjacent group to the right, as it would with a normal long jumper motor. When this four- and eight-pole connection is one delta, it will have four poles.

Fig (3-136) (a) A six- and 12-pole, constant-torque motor. The center lead connects to the left lead of the group adjacent to the group that is the start of the phase. When this six- and 12-pole motor is connected as one delta, it will have 12 poles.

Fig (3-136) (b) A six- and 12-pole, constant-horsepower motor. The center lead connects to the right lead of the group adjacent to it, the same as a normal delta motor is. Connected as one delta, this six-and 12-pole motor will have 12 poles.
 ఎఠీহ્રల్రీ:

Fig (3-137) A four-speed constant-torque motor consisting of a four- and eight-pole winding and a six- and 12-pole winding. The idle winding must be opened to prevent circulating currents induced from the energized winding.

Fig (3-138) Two-speed seven-lead motor. Constant torque.

Fig (3-139) Phase A of a variable-torque motor connected two wye for high speed.

 ธช50

Consequent

 Oi:(ડ) 8 จ Three-Phase

Fig (3-140) (a). Phase A of a variable-torque motor connected one wye for low speed.

Fig (3-140) (b) Phase B of a variable-torque motor connected one wye for low speed.

Fig (3-140) (c) Phase C of a variable-torque motor connected one wye for low speed.

Fig (3-140) (d) A variable-torque four- and eight-pole motor connected one wye for eight poles and low speed.
For high speed, connect L_{1} to T_{4}, L_{2} to T_{6}, L_{3} to T_{5} and connect T_{1}, T_{2} and T_{3} together.

Fig (3-141) A consequent-pole, eight-pole, three-phase motor, connected one wye.

Fig (3-142) A consequent-pole, eight-pole, three-phase motor, connected one delta. T_{7} is used instead of connecting to T_{3} when this connection is used in a two-winding motor.

 ఇీ|બీరை

Fig (3-143) Connections for multispeed squirrel cage motors.

Odd-Pole Grouping (- - -

(1)

 "న్రీ"

(6) గ్రిโీశ603:ધృ:

First Half 1						1/2 line				Second Half 2							
1			2			3			1			2			3		
A	B	C	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C
N	S	N	S	N	S	N	S	N	S	N	S	N	S	N	S	N	S
2					2		2		2					2		2	

1			First half						Second half								
				2			3			1			2			3	
A	B	C	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C
N	S	N	S	N	S	N	S	N	S	N	S	N	S	N	S	N	S
2	3	3	3	3	2	3	2	3	2	3	3	3	3	2	3	2	3

 మగీథ్̨ిీుల్రీ

(1)

4 Ǫ:(ふ) $\times 3$ Phase

$$
=12 \text { उిక్రీ }
$$

First half						Second half						
1			2			1			2			
A	B	C	A	B	C	A	B	C	A	B	C	
N	S	N	S	N	S	N	S	N	S	N	S	
5	4	5	4	5	4	5	4	5	4	5		-- short jumper
5	4	5	4	5	4	4	5	4	5	4		- long jumper

Fig (3-145) Distribution of a four-pole, 54-slot motor showing both short jumper and long jumper arrangements.

(1) $48:(\Omega) \times 3$ Phase $=12$ șర

6 గిโీశశ
(3) วิธธ0โ్రీ: |

 6จ巾ว్పుష్షు

Rewinding And Reconnecting Three-Phase Motors

Reconnecting for a Change in Voltage (

(Nameplate) శఎన్రీయగ:

 ఐை

Rewinding for a Charge in Voltage (8,

र๐ఱว॥

 ఎఠీశిดిดిดు

रuөวा ॥

ిุఁఁ૩દ

रు囚วు ||
(1)

(2)

โ్రీఁધృ

Old turns $\times(\text { old } \mathrm{Hz} / \text { new } \mathrm{Hz})^{2}=$ new turns
ద్డుm క్రీఁ:
Old turns \times old $\mathrm{Hz} /$ new $\mathrm{Hz}=$ new turns

Changing Concentric Windings To Lap Windings

50囚つ॥

$$
\begin{aligned}
& \text { [} \sigma \text { GTc }
\end{aligned}
$$

 గిం్యీయ్యర్ల:

 ञmin|:G|

Chord Factor (Em? ($\}$ |umim)

-600

Fig (3-147) The sine wave as it would compare with two full spanned coils in the flattened slots of a four-pole, 36 -slot stator. One tooth $=20^{\circ}$.

Span	Turns	Chord factor			
$1-9$	50	\times	.984	$=$	Effective turns
$1-7$	32	\times	.866	$=$	49.2
$1-5$	12	\times	.642	$=$	27.7
			Total effective turns per group	$\frac{7.7}{84.6}$	

 دన్ర్"

 [ైะ:

(2) $6 \operatorname{mos}(\mathrm{~S}) 6 \oplus(\mathrm{ej}:$

(5) (Seal) ro̊ంో 1 (Shield) ァm (

 ฐโ์:

Fig (3-148) A ball-bearing illustration showing the components.

Fig (3-149) One style of bearing puller.

 2న్రీ"

చయీుภฤీశ

 Goom:uఇ్ర

Fig (3-150) A ball-bearing heater used to install ball bearings.

Fig (3-151) Tubes made for driving or pressing ball bearings onto the shaft of an electric motor.

4. Reversing Three-Phase Motors

Fig (3-152) A three-phase motor connected to a three-phase line.

Fig (3-153) To reverse the direction of rotation, interchange any two motor leads.

Testing (of:uciec:

 बబొ"

Fig (3-154) Testing a polyphase motor for grounds.

 § య్యరీ

Fig (3-155) Testing a series-wye motor to locate the grounded phase. T_{2} has the highest amp reading, showing the C phase to be grounded.

Fig (3-156) Testing the C phase of a series-wye-connected motor to locate the end closer to the grounded coil.

 ఎఠీఅई国|:
 ت్యొ:uన్రం

Fig (3-157) Locating the grounded group with a test light by opening splices.
(Δ) delta ఔฉைగీ

 §ఁీ(3-160)ున్రీగియీఱన్ర
 1 §र्ఢ $2 \mathrm{Y}, 1$ §̧

Fig (3-158) Testing a series-delta motor to locate the grounded phase. T_{2} has the highest amp reading, and T_{1}, is second highest, showing the ground to be in the A phase close to T_{2}.

Fig (3-159) Testing a one- and two-wye motor to locate the grounded phase. T_{8} has the highest amp reading, showing the C phase to be grounded.

 161) శంగిఁఁ:

 T

 6\$60036\$ๆ Ө6ๆア๗์

 บన్రీ|"

 G1్రిఁీలున్రీII Fig (1-163.

Fig (3-160) Testing a one- and two-delta motor to locate the grounded phase. T_{2} has the highest amp reading, and T_{7} is second highest showing the ground to be in the A . phase close to T_{2}.

Fig (3-161) Locating the open Phase with a test light.

Fig (3-162) Locating the open group with a test light.

B Phase §ీ C Phase $\mathfrak{\imath}$. రી్్సరీఠి: G్రీఠి:دన్రు| (Δ)
 ตીర

 ฉగీตృ:

 ${ }^{\text {Q20 }}$

 Fig (3-164) ァ ๐ฺిఁ: (Δ)

Fig (3-164) Finding open winding with test light. Delta connection must be opened at the leads when using test light for this test.

Fig (3-165) How to find an open group with a test light on a delta connection.

Fig (3-166) Locating an open in a-twoparallels wye motor using a test light.

Fig (3-167) Applying limited current to a winding to determine the open phase in a two-wye motor. The open phase will draw less current.

య్యరీఠి: శว:

Fig (3-168) Applying limited current to a winding to determine the open phase in a two-delta motor. The open phase will draw less current. The direction of current flow is explained in Fig. 3-163 (a) and (b).

 (Δ) ธरృ

Fig (3-169) Locating the open circuit of the A phase with a clip-on ammeter and limited current.
Shorts (Eg?)

Fig (3-170) The use of an internal growler to locate a shorted coil.

Fig (3-172) Testing a one-delta winding using the balance method. The readings mean that the A phase may have a short.

Fig (3-171) Testing a one-wye winding using the balance method. The readings mean that the A phase may have a short.

Fig (3-173) (a) Using the balance test on a one- and two-wye winding to locate shorts. Tests 1,2 and 3 should have the same amp reading. Test 4,5 and 6 will read lower but should all be the same. If tests 4 and 6 are higher than 5 , the short will be in the A phase.

Fig (3-173) (b) Using the balance test on a one- and two-delta winding to locate shorts. All tests should have the same amp reading. A higher reading on any test may mean a short.

 యన్రీ"

巾 Ţర

 ంోనస::

Fig (3-174) The correct method of connecting a threephase, two-pole star (wye) motor is indicated by the compass needle.

Fig (3-175) A test rotor used to find reversed coils or coil groups in stators.

 ธрр

Reverse Phase (\measuredangle Gัว

Fig (3-176) An incorrect connection of phase B. Reverse this phase.

गิ..

(d) 0 (c) $\$ 6000$ Phase (4)

(a) ต\|le(§)Go

(e)

(a) $0 ई \approx:$ णp: 2 Z : (3)

Fig (3-177) Testing a fuse with a test lamp.

Fig (3-178) Testing for blown luses with a voltmeter. If the fuse is blown, there will be a voltage reading.

Fig (3-179) A star-connected motor with burned-out fuse in one phase. Current through the other two phases will overload the coils and burn them out.

Fig (3-180) A delta-connected motor with burned-out fuse in one phase. High current will flow in one of the phases.

 060003 Core §

Fig (3-181) Lift the shaft up and down. Movement indicates worn bearing of shaft.

Fig (3-182) A feeler gauge, which has thin metal strips of different thickness.

 ๆీ $00: 6 \$$ §

 [్రీలన్ర్ర"

Fig (3-183) The air gap should be the same around the entire motor. This is checked with feeler gauge.

 ซธ\&\%

4. Open Phases (uç çfem

Fig (3-184) Disconnect belt and try to move load in order to see if load is free to turn.

Fig (3-185) Snap around ammeter used to determine current in each line.

5. Shorted Coil or Group (Eп?

 Gరుల్ర"

7. Incorrect Voltage (ey¢币

8. Wrong Internal Connections

Fig (3-186) The ball bearing should rotate around the core of the stator if internal connections are correct.

10. Defective Controller ((altuc:

13. Open Parallel Connection (

Chapter 4

Alternating-Current Motor Control (A.C ธย์

 ァய్ముભตృ:

 Voltage Starter ų̧aી ગల్రు"

 Pushbutton Switch Starters pioั: Resistance Starters, Solid-State Reduced-Voltage Starters, CompenSator Starters, Wye(2Delta Starters, Drum Starters, Part-Winding Starters, Two-Speed Controllers, Adjustable-

 -\$סosmject.G6003 Diagram

 శ్రీీpøp

Fig (4-1) A wiring diagram of a standard START-STOP pushbutton station,

Fig (4-2) A line diagram of a START-STOP pushbutton station.

Starters

Pushbutton Switch Starter for Fractional-Horsepower Motors

Fig (4-4) A pushbutton switch starter connected to a single-phase motor.

Fig (4-5) A pushbutton switch starter connected to a threephase motor.

Fig (4-6) Types of manual starters.

Across - The - line - Starter

 Starter గి Fig (4-7) §§ (4-8) ஜ్రీ

 9) ఠ్రీ్రీ

Fig (4-7) A magnetic across-the-line starter connected to a three-phase motor. This is an older starter with two overload relays.

 Auxiliary Contact ujp:ñ बjp:603

Fig (4-8) Magnetic across the line starter for three-phase motor. Note three overload relays.

 دొ్రు" Fig (4-8)

Relay and Auxiliary Contacts	Contactor Contacts	Push Buttons	Motors and Indicating Lights
$\stackrel{\perp}{\top}$ Normally open	$\frac{1}{\top}$ Normally open	$\frac{1}{0}$ Single circuit normally open	Indicating light Indicate color by letter symbol
$\not \approx$ Normally closed	* Normally closed	مله Single circuit normally closed	Three phase
$\underset{-\underset{\text { т.о. }}{\text { т. }}}{ }$ Timed open	Overload relay	ol Double circuit	Non-reversing
	Timer Contacts	Miscellaneous	
Timed closed Single Voltage Magnetic Coils	Time Delay On Energization Normally Open	- IFI- Power or control circuit fuse	Single phase reversing
Dual Voltage Magnetic Coils	Time Delay On Energization Normally Closed	Resistor	
High voltage	Time Delay On De-Energization Normally Open	Control transformer Single voltage	
		Control transforme Dual voltage	

Fig (4-9) Wiring diagram symbols.

Fig (4-10) Magnetic starter for a three-phase motor.

 $\infty 3: 603$ จబఁఁ\}

Fig (4-11) (a) Bimetallic overload relay. 11 a § § b) ఠ్ఠદ

 ตీ Contact 2 จุนั นั:

 1008 .

Number of Overload Relays Required

Fig (4-13) (a) A three-phase starter.
Single Phase, Three Pha

 National Electrical Code m

6ుల్రు్మఙః प్రీ Code ふๆ

Fig (4-13) (b) Three-phase starter.

Fig (4-13) (c) Three-phase starter.

Fig (4-14) Start-stop stations.

రీધీ§uct

 ుబ్రు| શీ

Fig (4-15) శமగ్రిఁ: START \$ిరయి:గి

 (Overload Relay) ตी © ©

 దిత్రీ,

Fig (4-15) A simplified diagram of a magnetic across-the-line starter.

 (M Contact) बjp: ફి:mరీడఠ૧ईీ గ్రిદ M గ్

 -Down. Transformer) osీąuloీ600

Fig (4-16) Line diagram of a control circuit.

Fig (4-17) A line diagram of a magnetic across-the-line starter.

 ヱธగ్యీీG|
 ిీఁున్రీ॥ ఇీరీ, ఠp:

Fig (4-18) Three-phase starter with three-coil thermal O.L. relay and step down control transformer in control circuits.

Fig (4-19) Three-pole, three-phase .starter with external two or three wire control.

Fig (4-20) Three-phase starter with control-circuit transformer and secondary fuse.

Combination Starters

Combination Start -

 -ker બృలఠఐీ
 ๆుల్రీ॥ Fuse (ఝ్యి) Circuit

Fig (4-21) Combination starters with fusible disconnect switch.

 [ెc: G§จిఫీ万反र Fuse $0 x \delta 00: 6003$ Conbination Starter $\mathfrak{~}$ [G00:دయ్రీ|I Fig (4-22) of Combination Star -ter §؟̣ Circuit Breaker

Fig (4-22) Combination starters with thermal magnetic circuit breaker.

Pushbutton-station Connection

 అ్vરీ:

Fig (4-23) A magnetic switch controlled by three START-STOP stations.
 ఎई:

Jogging (буч:

Fig (4-24) A control circuit for three START-STOP stations.

 -gged or Inched) ט్రీళ్థిఁకున్రీ"

Fig (4-25) A control circuit for two START-STOP stations.

 START §

Jog $\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$
Selector switch operation

Fig (4-26) A START-JOG-STOP station with selector push button, connected to a magnetic switch.

Fig (4-27) START-JOG-STOP station with selector push button.

 Contact m uofnel: ro్రc: Holding

 GUII JOG ఫ్యరయి:

 - §గญ్ Contact बj:

Fig (4-28) (4-29) § ¢ (4-30) مగ. .

Fig (4-28) Jogging with push-turn selector switch.

Fig (4-29) Jogging with a selector switch.

Fig (4-30) Control circuit with JOG-RUN selector switch.
 บุ:

Fig (4-31) A panel of a station in which the START button can be used for inching or jogging.

Fig (4-33) A magnetic switch operated by a START-

Fig (4-34) An elementary diagram of Fig. 4-33.

Fig (4-32) Magnetic switch with JOG-RUN selector switch.

Fig (4-35) A jog relay connected to a magnetic switch.

Fig (4-36) Control circuits of START-JOG-STOP button connected to a jog relay.
 గిరింీఁర

START-STOP STATION WITH A PILOT LIGHT

Fig (4-37) Push button station with pilot light connected to a three-phase magnetic starter.

Fig (4-39) Station with pilot light.

Fig (4-38) A simple control circuit of a START-STOP station with a pilot light.
 ๆईణం్మీ Pushbutton Station

 Fig (4-37) §

Fig (4-40) Pilot light indicates when motor is not running. Normmally closed contact M must be added to the starter.

Full-Voltage Reversing Starter (鄱

Fig (4-41) An ac full-voltage magnetic reversing controller.
 2ul60 FORWARD-REVERSE-STOP Station

Fig (4-42) An elementary diagram of Fig. 4-43.

Fig (4-43) A reversing magnetic starter operated by a FORWARD-REVERSE-STOP station.

 60دయ్రు

ఎఠీวาภఠ์

 oృ

 Ģciocosas tact बjว:

 -liary Contact बjp:ฐโ్మmయున్రీ"

 § $\varepsilon_{\text {. FORWARD-REVERSE- }}$

GODC:§čqई FORWARD

Fig (4-44) Connections for two FORWARD-REVERSE-STOP stations to a reversing magnetic switch.

Fig (4-45) Reversing magnetic starter with electrical interlock.

L5-limit chitch
Fig (4-46) Line diagram of control circuits of Fing. 4-45.
 Limit Switch (义ָ:

Fig (4-47) A magnetic reversing switch with electric interlock connected to a FORWARD-REVERSE-STOP station.

 ఫొనున్రీ॥ Fig (4-48) ס్రీ

Fig (4-48) Line diagram control circuits of magnetic reversing switch with electric interlock. B and C are used if limit switches are not used.

Fig (4-49) Two FORWARD-REVERSE-STOP stations connected to fermis immediately reversing without pressing STOP button.

Fig (4-50) An elementary diagram of a reversing magnetic starter with electrical interlocks.

 STOP Station o్ర
 ఎ

Fig (4-51) Control circuit with step down transformer.

Reduced-Voltage Starters

 โిఁర

Fig (4-52) A magnetic reversing switch in a vertical, instead of a horizontal, position.

Primary-Resistance Starter

 ચు:ఠన్రు શ్

Rheostat Type of Resistance Starter (зз甲е: ззеп:

 -Phase σ ీంm Starter \sim hig (4-53) ס్ర Repulsion-Inductin 6 కోం

 Contact बjp:cữ

 ఱి.

 are closed.

Fig (4-54) A wiring diagram of a single-step, primaryresistance type of automatic starter.

 2న్రీ"

Secondary-Resistance Starter

 57) ఐ્ર

Fig (4-57) A secondary-resistance starter connected to a wound rotor. A three-pole manual switch is used for the stator.

 "100

 ఠ600

 2న్రీII

Solid-State Reduced-Voltage Starter

Solid-State Starter $ஸ^{\circ}$

 -tact बु:כ్亡::

 State Motor Control " ァวई:๐్ఠఁ

 Sine Wave గ్రిరీలుగ్రII Cycle ตी
 ஸిธc్సా:

Fig (4-60) The simplified wiring diagram of a solid-state, reduced-voltage starter.

a)

b)

Fig (4-61) A comparison with the normal sine wave (a) and the sine wave of the reduced-voltage part of the starting cycle (b).

 ∞ ©: 1 [్రీII]

 ચబ્રી"

 ఎబ్"
(3) परీయG్రీము:

Autotransformer Starters-Compensators

 ∞ 毋โ์

Manual Autotransformer Starter

Fig (4-63) Autotransformer type manual starter.
Fig (4-64) Schematic diagram of a manually operated three-phase autotransformer starter.

Fig (4-65) Ah elementary diagram of a three-phase compensator.

Fig (4-66) A manual autotransformer type reduced-voltage starter using two A.T. coils.

Fig (4-67) A line diagram of a two-coil, three-phase compensator on START position. Note the open-delta connection.

 L_{1} §ీ

 యભీ

Fig (4-68) Motor and control circuit of an autotransformer type magnetic starter.

Fig (4-69) Control circuit of Fig. 4-68.

Fig (4-70) Autotransformer type reduced-voltage magnetic starter.

 Contactor 2 Sm พి:

Fig (4-71) Each phase of a delta-connected motor receives the full line voltage.

Fig (4-72) If a delta-connected motor is connected wye, each phase will receive 58 percent of line voltage.

Fig (4-73) A star-delta connection for reduced-voltage starting.

 ァ๖ุ:

 T_{1} §

 cospuर్ర

Fig (4-74) Wye delta starter of the ofon transition type.
 గి પర

 -ors S, 1 M §
 क

Fig (4-75) Wye-delta magnetic starter. Contactor 1 M วున్రీ ంعీయว ฑి ธ๘รை

 T.O Contact बjp:uçu్ర::ใ్రి: Contactor

 Contactor S §̧

Part-Winding Starters

 T_{2} §

Fig (4:77) Typical wiring diagrams of two step increment starting.

Fig (4-78) Connections for G.E. part-winding starters.

Fig (4-81) A drum switch for reversing a split-phase motor.

Fig (4-79) A three-phase motor connected to a manual reversing-drum switch for clockwise rotation.

Fig (4-80) A drum switch connected to a three-phase motor for counferclockwise rotation.

Fig (4-82) A drum switch for reversing capacitor-start motor.

Fig (4-83) Typical connection diagram of drum switches.

 سరీ

(1)

Two-Speed Starter for Two Separate-Winding Motors

 Fig (4-84) ס్రీ

Fig (4-84) A two-speed controller for two sets of three-phase windings.

Fig (4-85) øூ

Fig (4-85) Two-speed, two-winding full-voltage starter.

CONNECTIONS MADE BY STARTER					
Speed	Supply L1			Open	
Low	T1	T2	T3	T4, 5, 6	
High	T6	T4	T5	None	

Fig (4-86) Wiring diagram of a two-speed, single-winding, three-phase, squirrel-cage motor controller for constant torque or for variable torque.

Two-Speed Starter for a Constant-Torque Motor

Fig (4-87) Control circuit for starter in Fig. 4-86.

 [im:un్రు|

Fig (4-88) Wiring diagram of a two-speed constant horsepower consequent pole motor starter.

Two-Speed Starter for a Constant-Horsepower Motor

ద్రిธธรం

 యబ్రీ| Fig (4-88) రీ

Two-Speed Diagrams

Fig (4-89) A multispeed starter for consequent pole motors.

Fig (4-90) Two-speed motor connections.

Adjustable-Frequency Controllers

 ァశ్రీ: DC e Three-Phase ని.

Fig (4-91) A one-through-15-horsepower, adjustable-frequency controller.

6ળी G6u:6012 §మ

(1) å

(3) Dynamic Braking
(4) Job Feature

 कరీ00っ:

Fig (4-93) A controller using a plugging relay for braking.

 คจిఁుల్"
 G: Main Contact 3 २ 飞రీ 0 F
 ${ }_{6 \$ 603}$ Auxiliary Contact F_{1} 8052్వు:G్ర: \%ic

Fig (4-94) A line diagram of a controller with a plugging relay.

ఐાroి̨દ:

(f) دేన్నిన్ Core

 Contact æว:ヘั:

 థిఁఃలన్రీ"
 बjp:

 Note ॥ (

 ద

Fig (4-95) A three-phase starter controlled by a float switch.

APPENDIX

TABLE 1 Table for Bare Copper Wire

$A W G$	Diameter, Inches	Circular Mils	Pounds per 1000 ft	Ohms at $68^{\circ} \mathrm{F}$. per 1000 ft
0000	0.4600	211,600.0	640.5	0.0490
000	0.4096	167,800.0	507.9	0.0618
00	0.3648	133,100.0	402.8	0.0779
0	0.3249	105,500.0	319.5	0.0982
1	0.2893	83,694.0	253.3	0.124
2	0.2576	66,370.0	200.9	0.156
3	0.2294	52,630.0	159.3	0.197
4	0.2043	41,740.0	126.4	0.248
5	0.1819	33,100.0	100.2	0.313
6	0.1620	26,250.0	79.46	0.395
7	0.1443	20,820.0	63.02	0.498
8	0.1285	16,510.0	49.98	0.628
9	0.1144	13,090.0	39.63	0.792
10	0.1019	10,380.0	31.43	0.998
11	0.09074	8,230.0	24.92	1.260
12	0.08081	6,530.0	19.77	1.588
13	0.07196	5,170.0	15.68	2.003
14	0.06408	4,107.0	12.43	2.525
15	0.05707	3,257.0	9.858	3.184
16	0.05082	2,583.0	7.818	4.016
17	0.04526	2,048.0	6.200	5.064
18	0.04030	1,624.0	4.917	6.385
19	0.03589	1,288.0	3.899	8.051
20	0.03196	1,022.0	3.092	10.15
21	0.02846	810.1	2.452	12.80
22	0.02535	642.4	1.945	16.14
23	0.02257	509.5	1.542	20.36
24	0.02010	404.0	1.223	25.67
25	0.01790	320.4	0.9699	32.37
26	0.01594	245.1	0.7692	40.81
27	0.01420	201.5	0.6100	51.47
28	0.01264	159.8	0.4837	64.90
29	0.01126	126.7	0.3836	81.83
30	0.01003	100.5	0.3042	103.2
31	0.00892	79.70	0.2413	130.1
32	0.00795	63.21	0.1913	164.1
33	0.00708	50.13	0.1517	206.9
34	0.00630	39.75	0.1203	260.9
35	0.00561	31.52	0.09542	329.0
36	0.00500	25.00	0.07568	414.8
37	0.00445	19.83	0.0601	523.1
38	0.00396	15.72	0.04759	659.6
39	0.00353	12.47	0.03774	831.8
40	0.00314	9.888	0.02990	1,049.0

EIECTRICMOTOR Repair \& Control

